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Abstract

The work done during this doctoral thesis involved advancing the theory of algebraic

depth. Subfactor depth is a concept which had already existed for decades, but

research papers discovered a purely algebraic analogue to the concept. The main

uses of algebraic depth, which applies to a ring and subring pair, have been in

Hopf-Galois theory, Hopf algebra actions and to some extent group theory.

In this thesis we consider the application of algebraic depth to finite dimensional

Hopf algebras, and smash products. This eventually leads to a striking discovery,

a concept of module depth. Before explaining this work the thesis will go through

many know results of depth up to this point historically. The most important result

of the thesis: we discover a strong connection between the algebraic depth of a

smash product A#H and the module depth of an H-module algebra A. In separate

work L. Kadison discovered a connection between algebraic depth R ⊆ H for Hopf

algebras and the module depth of V ∗, another important H-module algebra. The

three concepts are related.

Another important achievement of the work herein, we are able to calculate

for the first time depth values of polynomial algebras, Taft algebras with certain

subgroups and specific smash products of the Taft algebras. We also give a bound

for the depth of R/I ⊆ H/I, which is extremely useful in general.
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Background

The theory of depth originates from work in the book [10], where tower conditions

on subfactors are considered. There is a notion of subfactor depth as it appears

in, for example, the paper [39]. The body of work on subfactor depth certainly

merits study from anyone interested in the underlying subjects. However the study

of this subject will not directly lead to an understanding of depth theory as in this

thesis, especially since subfactor depth involves Von Neuman algebras, including

their topological properties which we do not treat.

The idea of algebraic depth, which we refer to throughout the thesis as depth,

historically started with the definition of the depth 2 property. The first case of

depth 2 was made with regards to strongly separable algebra extensions, which

are extensions S ⊆ R that have symmetric separability elements e ∈ R ⊗S R [17].

This purely algebraic notion of depth 2 generalises the idea of subfactor depth 2:

papers by Kadison-Nikshych and a paper and preprint by Kadison-Szlachnyi further

generalised the subfactor depth 2 condition to depth 2 [24], [23], [26], [25]. Given

an arbitrary ring extension R ⊆ H the depth 2 condition is when isomorphisms as

below exist over R-H and H-R-bimodules:

(i) H ⊗R H ⊕ ∗ ∼= q ·H;

(ii) H ⊕ ∗ ∼= p ·H ⊗R H;

where ∗ represents an arbitrary R-H or H-R-bimodule.

Early work on depth 2 in invariant subalgebras was geared towards understanding

Hopf-Galois actions, in this thesis Section 3.4 discusses a strong relationship of

the two things. (One of the main reasons Jones developed a successful theory of

subfactors was its application to noncommutative Galois theory [16].) Hence there

has always been a good reason to study the depth 2 condition. Furthermore, after the

original definition of depth 2 much effort was made to link depth 2 in Hopf algebras

or Hopf algebroids with the normality condition. The equivalence was found and is

presented for Hopf algebras in Subsection 3.2.2.

In [24] the depth n definition is made for Frobenius extensions, which generalises

the notion of subfactor depth n. This concept of depth n is fully generalised to ring

extensions in [19]. In this thesis we will write down this depth n ∈ N condition

for general ring extensions, but we will break it into even and odd cases. This is

effectively the starting point of the work in the thesis.
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Contribution

Basic definitions are introduced in Chapter 1, which are an assortment of definitions

and results appearing in other papers. See for example [4], [21], [20]. Notice that

the concept of Hirata-depth, otherwise labelled as H-depth does not appear in the

thesis, at no loss to the quality of results. The worked example on the polynomial

algebra (Example 2) can be considered original work (O.W) in this thesis.

Chapter 2 serves as an introduction to some technical results on k-algebras and

depth theory which are used later in the thesis. The section on groups explains the

impressive fact that d(kH, kG) <∞ for finite groups H ⊆ G, as in [4]. This fact was

a strong motivator in studying Hopf algeba depth (Chapter 3), because there is a

possibility that d(R,H) <∞ for all finite dimensional Hopf algebras. Moreover the

work on invariant subgroups is O.W. The sections on quivers (2.3) and morphisms

which preserve depth (2.4) are taken from work in the joint paper [50], written by

myself and L. Kadison. The work on both quiver examples was entirely down to L.

Kadison but the work on morphisms which preserve depth is O.W.

In Chapter 3 Hopf algebras are introduced followed by smash products, which

form two of the most important mathematical objects in this thesis. Hopf algebras H

are necessary in defining smash products A#H. Other than definitions and central

concepts I work through the chain of results showing that d(A,A#H) ≤ 2. Moreover

an equivalence between semidirect products and smash products when working over

group algebras is explained. Out of Chapter 3 the idea of calculating d(H,A#H)

for finite dimensional Hopf algebras arises, because we are interested in whether

d(H,A#H) is finite, as with d(A,A#H) for finite dimensional H.

Two completely worked examples of smash products appear in Chapter 4. These

examples remain unpublished but are O.W. The first examples deals with the family

of Taft algebras Tn over C, where each algebra is isomorphic to a particular smash

product. The second example is based on forming a smash product between the

Taft algebra T2 over R, with the complex numbers C#T2. The depth values for each

example are 3 and 4 respectively.

Module depth is a concept invented jointly with the supervisor of this thesis, L.

Kadison. The language which appears in this thesis is slightly different than that

which appears in for example the paper [21], which favours truncated tensor products

of a module Tn(W ) := W ⊕ (W ⊗W )⊕ . . .⊕ (W⊗n). Instead I defined module depth

as when a module W satisfies W⊗n+1 ∼W⊗n for some n ∈ N. In this chapter Hopf

algebras are taken to be finite dimensional, and much progress is made in finding the
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value of depth d(H,A#H) by using the concept of module depth. Sections 5.4, 5.6

and 5.7 consist of O.W, unless otherwise stated. Some of the content in Chapter

5 appeared in a joint paper [11] with A. Hernandez and L. Kadison. Of particular

note is the theorem which proves the depth result dodd(H,A#H) = 2d(A,MH) + 1.

Consequently I was eventually able to write down a striking inequality:

2d(V,HM)− 1 ≤ dodd(R,H) ≤ dodd(H,H#V ∗),

for finite dimensional Hopf algebras R ⊆ H. This equality brings three of our central

themes together: Hopf algebras, smash products and module depth.
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Chapter 1

The Depth Theory of a Ring

Extension

1.1 Tensor Products

In this thesis rings will always be unital with commutative addition and associative,

distributive multiplication. We will similarly assume that all modules over rings are

associative and unital. For background on rings and category theory see [2], [33],

[34]. Aside from algebraic structures like groups, rings and modules the most com-

monly mentioned algebraic objects in this thesis are undoubtedly tensor products.

In discussing tensor products we closely follow Section 3.7 of Jacobson’s book [15].

The original concept of a tensor product was defined for vector spaces, who have

bases, but here we deal with modules, which do not necessarily have bases.

For a set S define the free Abelian group on S, written as F (S), to be the

Abelian group with free generators the elements of S. Therefore an arbitrary element

of F (S) looks uniquely like p1s1 + p2s2 + . . . + ptst, with addition in this group

ps+ qs = (p+ q)s.

Lemma 1.1.1. Let S be a set and F (S) the free Abelian group, define the map

ι : S → F (S) by ι(s) = s. Let f : S → G be a mapping where G is an Abelian group,

then there exists a unique group homomorphism v : F (S)→ G making the diagram

below commute:

S

f

��

ι // F (S)

v
||

G

1



Proof. Clearly the map v(p1s1 + . . .+ptst) = p1f(s1)+ . . .+ptf(st) is a well-defined

group homomorphism which satisfies f = v ◦ ι. Let w : F (S)→ G be another group

homomorphism such that f = w ◦ ι then

w(p1s1 + . . .+ ptst) = w(p1ι(s1) + . . .+ ptι(st))

= p1w(ι(s1)) + . . .+ ptw(ι(st))

= p1f(s1) + . . .+ ptf(st)

= v(p1s1 + . . .+ ptst).

Then w = v and this homomorphism is unique.

Let R be an associative unital ring. Let M be a right R-module and let N be a

left R-module. We write M ×N for the product set.

Definition 1.1.2. Suppose that M,N are as above, a balanced product of M and

N is a pair (P, f), where P is an Abelian group and f : M × N → P a set map,

satisfying for all m,m′ ∈M , n, n′ ∈ N and r ∈ R

(i) f(m+m′, n) = f(m,n) + f(m′, n).

(ii) f(m,n+ n′) = f(m,n) + f(m,n′).

(iii) f(mr, n) = f(m, rn).

Given two balanced products (P, f), (Q, g) we define a morphism of balanced products

(P, f) → (Q, g) to be a group homomorphism φ : P → Q such that g = φ ◦ f ,

diagrammatically this means we have the following commutative diagram:

M ×N
f
��

g
// Q

φ
{{

P

Definition 1.1.3. A tensor product (M ⊗R N,h) is a balanced product which is

universal in the sense that for any other balanced product (P, f) there is a unique

morphism of balanced products u : (M ⊗R N,h)→ (P, f). In particular the under-

lying groups of any two tensor products will be isomorphic.

We will construct a concrete example of a tensor product. For any M,N as

above define F := F (M ×N), the free Abelian group on M ×N . We may write the

elements of F as

p1(m1, n1) + . . .+ pt(mt, nt),

2



where pi ∈ Z and (mi, ni) ∈M ×N . In particular the group operation in F is such

that

p(m,n) + q(m,n) = (p+ q)(m,n).

Let us define the subgroup I ⊆ F which is generated by elements of the form

(1) (m+m′, n)−(m,n)−(m′, n); (2) (m,n+n′)−(m,n)−(m,n′) and; (3) (mr, n)−(m, rn).

Proposition 1.1.4. The pair (F/I, h) forms a tensor product of MR and RN , where

h : M ×N → F/I is the map h(m,n) = (m,n) + I.

Proof. We must first check that (F/I, h) is a balanced product, in other words that h

satisfies conditions (i)-(iii) of Definition 1.1.2. The first condition is clearly satisfied

because

h((m+m′, n′)− (m,n)− (m,n)) = h(m+m′, n′)− h(m,n)− h(m,n)

= ((m+m′, n′) + I)− ((m,n) + I)− ((m,n) + I)

= (m+m′, n′)− (m,n)− (m,n) + I

= I = 0.

Conditions (ii) and (iii) are similarly satisfied, so that (F/I, h) is a balanced prod-

uct.

Suppose that we have a balanced product (P, f), by Lemma 1.1.1 there is a

unique group homomorphism v : F → P such that v(m,n) = f(m,n). Like the

homomorphism h, f satisfies conditions (i)−(iii) of Definition 1.1.2 so for all m,m′ ∈
M , n, n′ ∈ N

(m+m′, n)− (m,n)− (m′, n) ∈ kerv,

(m,n+ n′)− (m,n)− (m,n′) ∈ kerv,

(mr, n)− (m, rn) ∈ kerv.

Since the three types of elements above generate the subgroup I it is clear that

I ⊆ kerv, so u : F/I → P : (m,n) + I 7→ f(m,n) is a well-defined homomorphism.

Moreover this homomorphism satisfies u(h(m,n)) = u((m,n) + I) = (m,n) in other

words f = u ◦ h. The homomorphism u is clearly the unique such one.

Let us relabel the above tensor product example (F/I, h) as (M⊗RN,⊗R) where

⊗R(m,n) = (m,n) + I is written as m ⊗ n. Therefore given m,m′ ∈ M , n, n′ ∈ N
and r ∈ R, (i) (m+m′)⊗ n = m⊗ n+m′ ⊗ n; (ii) m⊗ (n+ n′) = m⊗ n+m⊗ n′

and; (iii) mr ⊗ n = m⊗ rn.

3



Lemma 1.1.5. Let MR be an R-module and let RR be an R-module via left multi-

plication, then the map

M ⊗R R→M,

m⊗ r 7→ mr

is an isomorphism of groups. And for left R-modules RN there is similarly an

isomorphism R⊗R N → N : r ⊗ n 7→ rn.

Lemma 1.1.6. Given a right module M and a family of left modules {Ni, i ∈ I},
then we have an isomorphism of groups

M ⊗ (⊕iNi)→ ⊕i(M ⊗Ni),

m⊗ (ni)i∈I 7→ (m⊗ ni)i∈I .

1.1.1 Extension to Bimodules

Let M,M ′ be right modules and N,N ′ left modules, moreover let f : M →M ′ and

g : N → N ′ be module homomorphisms. We may define a map M×N →M ′⊗RN ′ :
(m,n) 7→ f(m)⊗ g(n), which satisfies

(a) f(m1 +m2)⊗ g(n) = f(m1)⊗ g(n) + f(m2)⊗ g(n),

(b) f(m)⊗ g(n1 + n2) = f(m)⊗ g(n1) + f(m)⊗ g(n2),

(c) f(mr)⊗ g(n) = f(m)r ⊗ g(n) = f(m)⊗ g(rn).

This makes M ′ ⊗R N ′ a balanced product of M and N , so there is a unique group

homomorphism M ⊗RN →M ′⊗RN ′ such that m⊗n 7→ f(m)⊗ f(n). We call this

homomorphism f ⊗ g in general. If f ′ : M ′ → M ′′ and g : N ′ → N ′′ are right and

left module homomorphisms respectively then (f ′⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g).

Assume that M is an S-R-bimodule, this is equivalent to M being a right R-

module where for each s ∈ S there is an R-module homomorphism νs : M → M .

The notation νs(m) = sm is the one we are used to, however the mapping allows us

to define a canonical left S-module structure in M⊗RN , where N is a left R-module.

The group homomorphism νs⊗ 1 : M ⊗RN →M ⊗RN is the unique one such that

m⊗ n 7→ sm⊗ n. In particular M ⊗R N is a left S-module.

Lemma 1.1.7. Given an S-R-bimodule M and an R-T -bimodule N , then the tensor

product M ⊗R N has one unique S-T -bimodule structure such that

s(m⊗ n)t = sm⊗ nt, for all s ∈ S, t ∈ T .

4



Lemma 1.1.8. Given an S-R-bimodule M , an R-T -bimodule N and a T -U -bimodule

P . The tensor product is associative in the sense that there is an S-U -bimodule iso-

morphism

Ξ : (M ⊗R N)⊗T P →M ⊗R (N ⊗T P ).

Example 1. Let n ∈ N and let k be a field. We define the polynomial ring

k[X1, . . . , Xn] as the formal k-linear sums of a formal unit 1 and elements of the

form Xp1
1 . . . Xpn

n , where pi ∈ N and XkXl = XlXk for all 1 ≤ k, l ≤ n. We call the

aforementioned generators the monomials, in particular Xp1
1 . . . Xpn

n is a monomial

of degree p1 + . . . + pn ∈ N. When n > 0 this is an infinite dimensional k-vector

space.

Take natural numbers 1 ≤ m < n, and denote the rings R := k[X1, . . . , Xm]

and H := k[X1, . . . , Xn]. Via subring multiplication H is both a left and a right

R-module, with which we can form the tensor product H⊗RH. Notice that as rings

we have the following isomorphism:

H ∼= k[x1]⊗ . . .⊗ k[xn], (1.1)

where on the right side we have componentwise multiplication (x1 ⊗ x2 ⊗ . . . ⊗
xn)(x′1 ⊗ x′2 ⊗ . . . ⊗ x′n) = x1x

′
1 ⊗ x2x

′
2 ⊗ . . .⊗ xnx′n. Indeed the isomorphism is

given by identifying each monomial Xp1
1 · · ·X

pn
n with xp11 ⊗ . . .⊗ x

pn
n . We similarly

express the subalgebra R as k[x1]⊗. . .⊗k[xm]. Now apply (1.1) and the cancellation

rule of Lemma 1.1.8 to deduce the following chain of H-R-bimodules isomorphisms:

H ⊗R H ∼= k[X1, . . . , Xn]⊗R (k[x1]⊗ . . .⊗ k[xn])

∼= k[X1, . . . , Xn]⊗ k[xm+1]⊗ . . .⊗ k[xn]

∼= k[X1, . . . , Xn, xm+1, . . . , xn].

Where the bimodule structure of k[X1, . . . , Xn, xm+1, . . . , xn] is given by multipli-

cation of k[X1, . . . , Xn] as a subring. Note also that by symmetrical arguments the

above vector spaces are isomorphic as R-H-bimodules.

1.2 Depth Theory

Throughout the thesis we are interested in two specific types of module categories

(a) categories of bimodules RMS over rings or algebras R,S, and (b) the categories

of the left (or right) modules HM over a Hopf algebra H, as studied later in Chapter

5



5. Let C denote either of the above module categories, which should implicitly be

understood to mean that all definitions and results which follow apply to categories

of type (a) and (b).

The definitions of similarity and depth which appears in this chapter are already

published by other authors. The entire thesis is built on the definitions which follow.

In order to learn about depth some good papers to read are [4], [21], [20].

Definition 1.2.1. Let n ·M denote the n-fold sum M⊕ . . .⊕M . Given two modules

M,N in C we say that M divides N , and write M | N when there exists a module

M ′ such that

M ⊕M ′ ∼= N.

Define a relation among modules in C, by saying M is similar to N , and writing

M ∼ N , when there exist p, q ∈ N such that

M | q ·N and N | p ·M.

Lemma 1.2.2. There are two fundamental properties of similarity

(a) M ∼M for every module in C,

(b) If M ∼ N and N ∼ P , then M ∼ P .

Proof. Given a module M then clearly M ⊕ 0 ∼= M and so M ∼ M . Assume

now M ⊕M ′ ∼= N and N ⊕ N ′ ∼= P for modules M,M ′, N,N ′, P , then certainly

M ⊕M ′ ⊕N ′ ∼= P and we are done.

Lemma 1.2.3. Let M,N be modules in C, then M | N if and only if there are

module homomorphisms f : M → N and g : N →M such that g ◦ f = idM .

Proof. (⇒) Suppose M | N so that there exists M ′ with M ⊕ M ′ ∼= N . Write

π : N → M for the projection map π(m ⊕ m′) = m, write ι : M → N for the

canonical embedding ι(m) = m⊕ 0, then π ◦ ι = id as required.

(⇐) Take f, g as in the assumption. Take x ∈ N , because g ◦ f = id we have

the inclusion x − fg(x) ∈ kerg, therefore x ∈ fg(x) + kerg. It is clear now that

x ∈ imf + kerg. Notice that imf ∩ kerg = {0} because g ◦ f = id, note also that M

is isomorphic to imf as a module. We may finally write N ∼= M ⊕ kerg as modules.

In particular this means M | N .

The lemma above tells us that similarity (∼) in C can be replaced by morphisms as

in the commuting diagrams:

6



Mid 88
f
// q ·N

g
oo

, Nid 88
f ′
// p ·M

g′
oo

.

Corollary 1.2.4. Let M,N be modules as above, then M | q · N if and only if

there exist homomorphisms fi : M → N and gi : N → M (1 ≤ i ≤ q) such that∑
i(gi ◦ fi) = id.

1.2.1 Depth of Ring Extensions

Start by taking a ring extension R ⊆ H. Depth is a natural number calculated on

the tensor bimodules

H⊗Rn := H ⊗R H ⊗R . . .⊗R H︸ ︷︷ ︸
n factors

,

with H⊗R0 := R. The sets defined above will be X-Y -bimodules for subrings X,Y ⊆
H, via the multiplication

x(h1 ⊗ h2 ⊗ . . . hn−1 ⊗ hn)y = (xh1)⊗ h2 ⊗ . . . hn−1 ⊗ (hny).

In defining depth we will consider the specific cases: (a) X = Y = R; (b) X = R,

Y = H and; (c) X = H, Y = R. Similarity as in Definition 1.2.1 applies to the

bimodule categories XMY .

Definition 1.2.5. We say that the ring extension R ⊆ H satisfies the left depth 2n

condition, for n ≥ 1 if

H⊗Rn+1 ∼ H⊗Rn (1.2)

as R-H-modules. The right depth 2n condition is when (1.2) is satisfied as H-R-

modules, and when both left and right depth 2n conditions hold we say R ⊆ H

satisfies depth 2n. For n ≥ 0 the condition of depth 2n+ 1 is that (1.2) be satisfied

as R-bimodules. Notice that by the way depth is defined we do not have a depth 0

condition.

Lemma 1.2.6. If θ : H → L is an isomorphism of rings, then

d(R,H) = d(θR, θH).

This applies to infinite depth as well.

7



Lemma 1.2.7. Assume we have an extension R ⊆ H which satisfies the (left, right

or both) depth 2n condition then it also satisfies the 2n + 1 condition. Similarly if

the extension satisfies the 2n+ 1 condition it satisfies the 2n+ 2 condition (left and

right).

Proof. We show that if R ⊆ H satisfies depth 2n+ 1 then it satisfies depth 2n+ 2.

This case will make clear the idea of left or right depth 2n implying depth 2n + 1.

Suppose R ⊆ H has depth 2n + 1, in particular H⊗Rn ∼ H⊗Rn+1 as R-bimodules.

So for some p, q ∈ N we have H⊗Rn | p ·H⊗Rn+1 and H⊗Rn+1 | q ·H⊗Rn. Apply the

functor −⊗R H to both divisions, so

H⊗Rn+1 ∼= H⊗Rn ⊗R H | (p ·H⊗Rn+1)⊗R H ∼= p ·H⊗Rn+2,

H⊗Rn+2 | q ·H⊗Rn+1,

as R-H-bimodules.

An implication of the lemma above is that we should consider a minimum depth

(usually just called the depth of the ring extension), and we denote it by d(R,H).

Write dodd and deven for the minimum odd and even depths. We can find ex-

amples of both even and odd minimum depth (>2 and >1 respectively). By the

lemma directly above it is clear that |dodd − deven| = 1. Let us discuss one strat-

egy for finding the minimum depth. In the even case d(R,H) = 2n if and only if

deven(R,H) = 2n but dodd(R,H) = 2n+ 1; similarly d(R,H) = 2n+ 1 if and only if

dodd(R,H) = 2n+ 1 but deven(R,H) = 2n+ 2.

Recall that the definition of subring depth comes in two parts, H⊗Rn+1 ∼ H⊗Rn

if and only if (a) H⊗Rn | p ·H⊗Rn+1 and; (b) H⊗Rn+1 | q ·H⊗Rn. The lemma below

shows us that (a) is automatically satisfied.

Lemma 1.2.8. For each t ≥ 1, H⊗Rt | H⊗Rt+1 as H-R-bimodules, R-H-bimodules

and R-bimodules. For the t = 0 case, if H | q ·R as R-bimodules then R | H.

Proof. For the final claim we refer to Lemma 1.2.10. Define maps

f : H⊗Rt → H⊗Rt+1 and g : H⊗Rt+1 → H⊗Rt by f(x1⊗ . . .⊗ xt) = x1⊗ . . .⊗ xt⊗ 1

and g(y1 ⊗ . . . yn ⊗ yn+1) = y1 ⊗ . . . ynyn+1. Clearly both these maps are H-R-

bimodule homomorphisms, and moreover g ◦ f = id. Therefore H⊗Rt | H⊗Rt+1 as

H-R-bimodules. The R-H-bimodule case is proved using slightly different f and

g.
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Corollary 1.2.9. The following is a sufficient condition of depth 2n (depth 2n+1):

H⊗Rn+1 | q ·H⊗Rn

as R-H-bimodules, H-R-bimodules (R-bimodules).

Example 2. Let k be a field and take n,m ∈ N such that m < n, then as in Example

1 we have the polynomial rings R = k[X1, . . . , Xm] and H = k[X1, . . . , Xn]. This

pair of rings satisfies d(R,H) = 3.

Without loss of generality let us consider R := k[X] and H := k[X,Y ]. First of

all we ensure deven(R,H) > 2. Recall that the right depth 2 condition is equivalent

to H ⊗RH dividing a sum q ·H, as R-H-bimodules. From Example 1 that we have

calculated H ⊗R H and provided an H-R-bimodule isomorphism

H ⊗R H ∼= k[X,Y, Y ′].

In particular k[X,Y, Y ′] is a free left H-module with basis {Y ′ i | 1 ≤ i} in bijective

correspondence with N. Evidently H is also a free left H-module with basis {1},
meaning that there is no left H-module monomorphism H ⊗R H → q ·H. for any

q. A similar argument shows us that H ⊗R H is a free left R-module with basis

{Y i, Y ′ j | 1 ≤ i, j} ↔ N2, moreover H is a free left R-module with basis {Y i | 1 ≤
i} ↔ N. It is a well-known fact that N2 and N are in bijective correspondence [30,

Apx.2, Sec.1], so we deduce that H⊗RH and H are isomorphic free left R-modules,

and therefore as R-bimodules.

Example 3. In the paper [6, Thm.6.19] the authors have discovered that for Sn

the symmetric group on n letters the depth d(CSn,CSn+1) is exactly 2n − 1. This

result is extended to arbitrary fields k in [4, Prop.5.1].

1.2.2 Depth 1

The case of depth 1 is not difficult to deal with in general. There is a slight problem

with depth 1 satisfying Corollary 1.2.9. The following proof, taken from [20], deals

with this problem.

Lemma 1.2.10. If R ⊆ H is such that H | q · R, for some q ∈ N, then also as

R-bimodules, R | H and therefore H ∼ R.

Proof. If we start by assuming H | q · R then [20] explains how there is then the
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condition:

H ∼= R⊗Z(R) H
R, (1.3)

as R-Z(R)-bimodules, where Z(R) is the centre of R and HR := {h ∈ H | rh =

hr, ∀r ∈ R}. The above equation on the elements of H tell us, restricting to HR

that as a Z(R)-module HR is finitely generated projective. In particular, since

Z(R) ⊆ HR is a commutative subring HR will be a generator. (See [29, Sec.1.2])

Conveniently then we can write Z(R) as a summand of n·HR. So follows the division

R | n ·H, using (1.3). This implies the existence of n maps φi ∈ Hom(RHR,RRR)

and n elements ri ∈ HR such that
∑
φi(ri) = 1. In order to simplify and write

R | H we define the function E : R → H by E(h) =
∑
φi(hri). This map satisfies

E(r) =
∑
φ(rri) = r(

∑
φ(ri)) = r, so if ι : R→ H is the inclusion map, E ◦ ι = id

and so R | H.

Example 4. For every ring d(H,H) = 1. For a finite dimensional k-algebra A

d(k,A) = 1.

Example 5. Let Z be the centre of a ring H and let H be a Z-bimodule by

multiplication. If H is a finitely generated projective left Z-module then ZH | q ·ZZ
by definition, and because Z commutes with elements of H the latter division is

true as Z-bimodules. Applying Theorem 1.2.10 above we see that Z | H too as

Z-bimodules and so H ∼ Z. Consequently d(Z,H) = 1.

Generally speaking for a ring extension R ⊆ H where RH and HR are both

projective or even free, d(R,H) > 1 may occur. Later results show that we have

d(R,H) > 1 for certain choices of finite dimensional Hopf algebra, even though RH

and HR are free by the Nichols-Zoeller theorem.

1.2.3 Finite Length Modules

Let C again represent one of the module categories RMS or HM for rings R,S or

Hopf algebra H.

Definition 1.2.11. Given a module M in C, we say M is indecomposable if M =

M ′ ⊕M ′′ implies either M ′ = M or M ′′ = M .

Definition 1.2.12. A module M in C is called Noetherian if any ascending chain of

submodules M1 ⊆M2 ⊆ . . . stabilises, i.e. Mi = Mi+1 for some i. Similarly we call
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M Artinian when descending chains M1 ⊇M2 ⊇ . . . of submodules stabilise. When

a module is both Noetherian and Artianin we say that it has finite length.

Proposition 1.2.13 (Krull-Schmidt). Let M be a finite length module in C then

there is a decomposition

M ∼= M1 ⊕ . . .⊕Mr,

where each Mi is indecomposable. Furthermore given another decomposition into

indecomposables M ∼= M ′1 ⊕ . . .⊕M ′t then r = t and there exists a permutation σ of

{1, 2, . . . , r} such that for each i, Mσ(i)
∼= M ′i .

Definition 1.2.14. For a finite length module M let Indec(M) be the set of unique

isomorphism classes of indecomposable submodules of M .

Lemma 1.2.15. Given modules M,N in C, then M ∼ N if and only if

Indec(M) = Indec(N).

Proof. (⇐) First of all assume that Indec(M) = Indec(N), then let M ∼=
⊕
qi ·

Mi be the decomposition into non-isomorphic indecomposables with multiplicities.

Since Indec(N) = Indec(M) by assumption, N ∼= ⊕pi ·Mi is the indecomposables

decomposition of N . Take q = max{qi} then trivially qi ·Mi | q ·Mi | piq ·Mi for

all i, and so M | q ·N . Similar reasoning tells us that N | p ·M for p = max{pi}.
Subsequently M ∼ N .

(⇒) Suppose that M ∼ N so that for some p, q ∈ N, firstly M | q ·N and secondly

N | p ·M . For the first property there must exist an M ′ such that M ⊕M ′ ∼= q ·N .

Decompose M,M ′ and N into indecomposable objects. So because of the uniqueness

of indecomposables we may immediately see that Indec(M) ⊆ Indec(q ·N). Again

by the uniqueness of indecomposables Indec(N) =

Indec(q · N) and hence Indec(M) ⊆ Indec(N). Similarly the second property will

imply Indec(N) ⊆ Indec(M). Therefore M ∼ N implies Indec(M) = Indec(N).

Lemma 1.2.16. Let R ⊂ H be a ring extension then for all t ≥ 1 the following

inclusion holds as H-R-bimodules, R-H-bimodules and R-bimodules: Indec(H⊗Rt) ⊆
Indec(H⊗Rt+1). This immediately implies the chain of bimodule inclusions:

Indec(H) ⊆ Indec(H ⊗R H) ⊆ Indec(H ⊗R H ⊗R H) ⊆ . . . .
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Proof. On one hand we know from Lemma 1.2.8 that H⊗Rt | H⊗Rt+1 in gen-

eral, on the other hand we know from the previous lemma that Indec(H⊗Rt) ⊆
Indec(H⊗Rt+1).
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Chapter 2

Algebras

2.1 Definition

Algebras are rings with k-linear multiplication whose identity elements span a 1-

dimensional k-vector space. In this thesis we will often focus on finite dimensional

Hopf algebras and smash products over finite dimensional algebras, defined in Sec-

tions 3.1 and 3.3. See [14, Ch.7] for a fuller introduction to algebras and the basic

results.

An algebra over a field k is a triple (A,µ, η) where A is a k-vector space and

µ : A⊗A→ A is a multiplication with unit map η : k → A which are both k-linear

and satisfy commuting diagram conditions:

A⊗A⊗A id⊗µ
//

µ⊗id
��

A⊗A
µ

��

A⊗A µ
// A

A

k ⊗A

∼=
99

η⊗id
// A⊗A

µ

OO

A⊗ k
id⊗η
oo

∼=
ee

If A,B are algebras and f : A → B is a k-linear map, then we call f an algebra

homomorphism when
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A⊗A f⊗f
//

µA
��

B ⊗B
µB
��

A
f

// B

commutes and f(1A) = 1B.

Naturally we move on to modules over an algebra. A module M over an algebra

A is a k-vector space with an action of A on M given by m : A ⊗M → M which

satisfies commutativity of the following diagram:

A⊗A⊗M id⊗m
//

µ⊗id
��

A⊗M
m
��

A⊗M m //M

There are two important open questions regarding the depth of algebra exten-

sions. Both questions motivated much of the work in this thesis; the entire reason

for considering smash product algebras later was to find examples of (2).

(1) Does there exist a finite dimensional algebra extension with infinite depth?

(2) Does there exist an algebra extension with unequal left and right depth?

2.1.1 Augmented Algebras

An augmented algebra is one with an algebra map ρ : A→ k. Given such an algebra

we give some importance to the modules ρk and kρ with multiplication h ·λ = ρ(h)λ

etc. Notice that A ⊗A ρk ∼= ρk (easy exercise), for a subalgebra B ⊆ A write

B+ := kerρ ∩B, then

A⊗B ρk ∼= A/AB+.

The map A → A ⊗B ρk : a 7→ a ⊗ 1, has kernel AB+, so we apply the isomor-

phism theorem for modules relating to homomorphisms and kernels [2, Cor.3.7].

The following result can be found in [20, Prop 1.3].

Proposition 2.1.1. Suppose B ⊆ A is an algebra extension such that A is aug-

mented via ρ, if the extension has left depth 2 then B+A ⊆ AB+. Similarly, if the

extension has right depth 2 then AB+ ⊆ B+A.

Proof. Doing the left case is enough, so assume A ⊗B A | q · A as B-A-bimodules.

What we do is refer to the comment before the proposition and apply − ⊗A ρk to
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both sides:

A/AB+ | q · ρk

as left B-modules. Now the annihilator of ρk is B+ also annihilates A/AB+ implying

B+A ⊆ AB+ and we are done.

2.1.2 Finite Representation Type

The following concept has been well-discussed in [3], all related results and examples

except those on depth come from this book. Representations (indecomposable mod-

ules) and depth have a close relationship, as we have already begun to understand in

Subsection 1.2.3. Given an algebra A an indecomposable A-module M is one which

cannot be written M = M1 ⊕M2 for two non-trivial A-submodules M1,M2 ⊆M .

Definition 2.1.2. We say that an algebra A has finite representation type, f.r.t for

short, when there are only finitely many isomorphism classes of indecomposables in

HM and MH . In any other case the algebra is said to have infinite representation

type, i.r.t.

Given an algebra A and an A-module M a composition series for M is a chain

of submodules M0 ⊆ M1 ⊆ . . . ⊆ Mn such that Mi is a maximal submodule of

Mi+1. We call A a Nakayama algebra if each indecomposable projective left or right

module P has only one composition series. The proof of the result below can be

found in [3, VI. Thm.2.1], and is proved using various detailed results which we do

not treat here.

Proposition 2.1.3. All Nakayama algebras have f.r.t.

The classic example of an algebra with f.r.t is a finite dimensional semisimple

algebra (defined later), but there are Nakayama algebras which are not semisimple.

For example take k a field of characteristic p and G a cyclic p-group with order pn,

then kG ∼= k[X]/〈Xpn〉 is Nakayama (and therefore has f.r.t). That this algebra is

not semisimple can be seen from the existence of a non-trivial nilpotent ideal.

Let Aop be the opposite algebra of A, with multiplication a ·op b = ba. Another

way of talking about A-bimodules is as left A ⊗ Aop-modules, for they are exactly

the same thing: suppose M is an A-bimodule then define an action of A ⊗ Aop by

(a⊗ b) ·m = a ·m · b.
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Proposition 2.1.4 ([50], Prop.2.1). Suppose that R ⊆ H is an extension of finite

dimensional algebras where any of R⊗Rop, H⊗Rop, R⊗Hop or H⊗Hop have f.r.t

then d(R,H) <∞.

Proof. Without loss of generality suppose that R⊗Rop has f.r.t. Recall Prop 1.2.16

which proves the inclusion Indec(H⊗Rt) ⊆ Indec(H⊗Rt+1) for all t ∈ N, in this case

we consider this inclusion over the category ofR-bimodules (equivalently leftR⊗Rop-
modules). Since there are finitely many isomorphism classes of indecomposables R-

bimodules we deduce that Indec(H⊗Rn) = Indec(H⊗Rn+1) for some sufficiently large

n. Therefore by Lemma 1.2.15, as R-bimodules H⊗Rn+1 ∼ H⊗Rn, the condition of

depth 2n+ 1.

Corollary 2.1.5. Suppose that R ⊆ H is an extension of finite dimensional algebras

and let R lie in the centre of H. If R has f.r.t then R ⊆ H has finite depth.

Proof. Since R lies in the centre of H it commutes with every element of H, in

particular it is a commutative algebra. As in the proof of Proposition 2.1.4 we

consider the R-bimodules H⊗Rt for increasing powers. Take an element h1 ⊗ h2 ⊗
. . .⊗ ht ∈ H⊗Rt and r ∈ R, notice that

r(h1 ⊗ h2 ⊗ . . .⊗ ht) = rh1 ⊗ h2 ⊗ . . .⊗ ht
= h1r ⊗ h2 ⊗ . . .⊗ ht
= h1 ⊗ rh2 ⊗ . . .⊗ ht
= . . .

= h1 ⊗ h2 ⊗ . . .⊗ rht
= (h1 ⊗ h2 ⊗ . . .⊗ ht)r.

By the above property the left (or right) multiplicative R-modules H⊗Rt will nat-

urally be R-bimodules with their usual depth theory structure, and vice-versa. In

particular because R has f.r.t the indecomposables of H⊗Rt will stabilise as R-

modules for increasing t and this is true as R-bimodules as well. For this reason

depth will be finite.

The notion of representation type fails to fully capture the notion of algebra

depth. By [3, pp.111] the commutative algebra k[X,Y ]/〈X,Y 〉2 has i.r.t but we may

show that k[X,Y ]/〈X,Y 〉2 ⊆ k[X,Y, Z]/〈X,Y 〉2 has depth 3. (To prove this we can
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adapt the proof of Example 2: k[X,Y, Z]/〈X,Y 〉2 as a left and right k[X,Y ]/〈X,Y 〉2-

module has generators {1, Zr | r ∈ N}, in bijective correspondence with N.)

2.2 Modules over a Finite Dimensional Algebra

Module decompositions over finite dimensional algebras are covered in numerous

texts. I give a brief and dense treatment here in order to use the results in Chapter

4. Refer to [12, Chap.4] or [8, Sec.3.4] for a more systematic account of the results

below.

Definition 2.2.1. Given an element of a ring e ∈ H we call this element an idem-

potent when e2 = e. An idempotent e is called central when e is in the centre of

A. A pair of idempotents e, f ∈ A are called orthogonal when ef = fe = 0. An

idempotent e is primitive if when f, g are two orthogonal idempotents such that

e = f + g then f = 0 or g = 0.

Proposition 2.2.2 (Krull-Schmidt for Algebras). Every finite dimensional module

M has finite length and therefore the Krull-Schmidt theorem for rings applies: M ∼=
M1 ⊕ . . .⊕Mn for indecomposables Mi and i ≥ 1. This decomposition is unique up

to permutation.

The following two results appear as [[8], Thm.1.7.2, Cor.1.7.1].

Proposition 2.2.3. Given an A-module M then there is a bijective correspondence

between decompositions of M into direct sums of submodules and sums of idA ∈
End(AM) into pairwise orthogonal idempotents.

We say that an algebra is local when it contains a unique maximal left ideal.

Notice that in a local algebra A the unique maximal left ideal will be the Jacobson

radical (defined below) we deduce that this left ideal is a right ideal and is a two-

sided ideal. Indeed we may have equivalently defined a local algebra to be one with

a unique maximal right ideal.

Corollary 2.2.4. A finite dimensional A-module M is indecomposable if and only

if End(AM) contains no non-trivial idempotents, in other words End(AM) will be

a local algebra.

Proof. If e ∈ End(AM) is a non-trivial idempotent then e, (idA − e) form a decom-

position of idA into orthogonal idempotents.
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2.2.1 Semisimple Modules

Call a module S simple when it contains no non-trivial submodules T ( S. Sim-

ple modules are indecomposable, but not the other way around. We call a module

M semisimple if it can be written M = ⊕i∈ISi where each Si is simple. An al-

gebra is called semisimple when all of its modules are semisimple. This has many

equivalences, and modules over semisimple algebras have a somewhat well-behaved

structure. Indeed, without going into too many details in [6] the authors prove that

finite dimensional semisimple (Hopf) algebra extensions R ⊆ H always have finite

depth.

Remark 2.2.5. An equivalent definition of a simple left (right) module is one isomor-

phic to A/M whereM is a maximal left (right) ideal of A. For if S is simple then it

is cyclic i.e. S = R · x for some (indeed all non-zero) x ∈ S, then set M := Ann(x).

The isomorphism theorem for modules tell us Ann(x) is maximal.

Definition 2.2.6. A strongly nilpotent element e ∈ A is such that for a particular

m ∈ N and any m elements x1, . . . , xm ∈ A we have ex1ex2 . . . exn = 0.

Lemma 2.2.7. An algebra is semisimple if and only if it contains no non-zero

strongly nilpotent elements.

Given an A-module M we define the radical of M to be

rad(M) :=
⋂
{K ⊆ A | K maximal submodule}.

Naturally extending we define the Jacobson radical of A to be rad(A) := rad(AA),

the radical of A as a left A-module. There is the following famous lemma to put

minds at ease:

Lemma 2.2.8. The radicals of AA and AA are both equal. Therefore we may have

equivalently defined the Jacobson radical using AA.

Lemma 2.2.9. If A is semisimple then rad(A) = 0. If A is Artinian then it is

semisimple if and only if rad(A) = 0.

Lemma 2.2.10. The radical rad(A) consists of elements x ∈ A such that 1− ax is

a unit for all a ∈ A.

Theorem 2.2.11 (Artin-Wedderburn Decomposition). Given a finite dimensional

semisimple k-algebra A we may decompose it into matrix algebras

A ∼= Mi1(D1)⊕ . . .⊕Mit(Dt),
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where D1, . . . , Dt are all division algebras over k.

2.3 Path Algebras of Quivers

The depth theoretic results of this section appeared in a joint paper [50], where L.

Kadison worked out the details of the examples personally. Introductory ideas on

quivers are fully explored in the book dedicated to the subject [12].

In this section the notion of a quiver is explained, from the quiver we construct

a special algebra called the path algebra. Quivers and path algebras have some

nice applications to depth theory, in particular giving us the two main examples

of this section. One of the interesting points of using quivers with depth theory is

that they allow us to consider matrix algebras and find the depths of certain matrix

subalgebras. Working with matrices and depth is generally complicated - one may

attempt to compute the depth of some subalgebras in Mn(A) and this becomes clear.

Definition 2.3.1. A quiver Q = (V,A, s, t) is a set of vertices V and arrows A with

s, t : E → V known as the source and target maps. If α ∈ A and s(α) = a and

t(α) = b then we might better literally draw an arrow a
α // b .

A quiver Q is finite when |V | and |A| are finite. It is often easier to just reference

a finite quiver by a picture, without even labeling the vertices or arrows. A few

examples follow:

◦ α // ◦

β
��
◦

γ

__

◦99 ee

Definition 2.3.2. For a quiver Q a path of length l around the quiver is a series of

arrows (a|α1, . . . , αl|b) such that t(αi) = s(αi+1) (1 ≤ i < l).

For each vertex a ∈ V there is the trivial length 0 path (a||a), usually denoted

by εa. A cycle in Q is a path (a| . . . |a) of length ≥ 1. If the quiver has no cycles

then it is called acyclic.

A connected quiver is one such that the underlying graph is connected. We under-

stand this as follows: if there is either a path a → b or b → a then we say a and b
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are related vertices. Generate an equivalence relation by this relation, then we say

the quiver is connected if every vertex lies in the equivalence class. In the remainder

of this section we will focus entirely on connected quivers.

Definition 2.3.3. A subquiver Q′ = (V ′, A′, s′, t′) of Q is a quiver in its own right

such that V ′ ⊆ V , A′ ⊆ A and s′ = s|A′ , t′ = t|A′ where applicable.

Given a finite quiver Q define its path algebra kQ over field k by first writing

kQl for the k-span of paths of length l and summing:

kQ :=
∞⊕
i=0

kQi.

This takes care of the underlying set but multiplication is easily defined by concate-

nation, given α = (a|α1, . . . , αl|b) and β = (c|β1, . . . , βp|d) write

αβ =

{
(a|α1, . . . , αl, β1, . . . , βp|d) b = c

0 b 6= c

By this definition kQ is an N-graded k-algebra. We need to take Q finite because

otherwise we won’t have an identity element according to this definition. The iden-

tity as it stands will be
∑

a∈V εa.

Example 6. The path algebras of the quivers

Q

◦99
Q′

◦99 ◦99

are k[X] and k[X,Y ]/〈XY 〉 respectively, both being commutative.

2.3.1 Depth of the Diagonal Subalgebra

Suppose that we have a finite connected acyclic quiver Q with n vertices, then there

is always a way of labeling the vertices 1, 2, . . . , n such that if there exists an arrow

i→ j then i > j ([40], Cor 8.6). With such a labeling of vertices notice that εikQεj

denotes the k-linear span of paths i→ j, call this set Qi,j , then Qi,jQj,k ⊆ Qi,k. In

particular Qi,i = kεi ∼= k because Q is acyclic.

Lemma 2.3.4 ([12], 1.12). Let Q be a finite connected, acyclic quiver as above then

kQ is isomorphic to a lower triangular matrix algebra
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Q1,1 0 · · · 0

Q2,1 Q2,2 · · · 0
. . .

Qn,1 Qn,2 · · · Qn,n


This result is intuitively clear since kQ =

⊕
Qi,j , the trickiest part is showing that

the matrix multiplication is the same as the algebra multiplication. Notice that for

all i ∈ V Qi,i ∼= k, because there are no loops, that means we are writing the algebra

as: 
k 0 · · · 0

Q2,1 k · · · 0
. . .

Qn,1 Qn,2 · · · k


Example 7 (Kronecker Algebra). Let Q be the quiver:

◦ ◦
αoo

β
oo

This is known as the Kronecker quiver, naturally we then call kQ the Kronecker

algebra. Now because this quiver is connected, finite and acyclic we may apply the

theorem above, noting that Q2,1
∼= k2:

kQ ∼=

(
k 0

k2 k

)
.

In [3, VIII.7] the Kronecker algebra is shown to have infinite representation type.

A path algebra A = kQ over a finite, connected, acyclic quiver will be augmented

n times, with ρi : A→ k given by x 7→ εixεi, which is sending the matrix of x to the

(i, i)th entry. Write ρikρj for the simple A-bimodule such that a · 1 · d = ρi(a)ρj(d)1.

Think back to Proposition 2.1.1, which tells us that if an augmented algebra (A, ρ)

has a subalgebra B with left depth 2 then B+A ⊆ AB+. We use this fact to prove

a result on depth.

Theorem 2.3.5 ([50], Thm.4.2). Consider A = kQ as a triangular matrix algebra

of a finite, connected, acyclic quiver Q with |V | > 1. Then the subalgebra
⊕n k,

representing the main diagonal, has depth 3 in A.

Proof. Write B := ⊕nk(= ⊕ni=1εiAεi), we show that B ⊆ A doesn’t have left depth

2, this in turn shows that depth 2 is not a possibility. Write B+
i := B ∩ kerρi, then

21



it is sufficient to show that B+
i A * AB+

i . Note that AB+
i are the matrices with

the ith column entries all zero; similarly B+
i A are the matrices with zero ith row

entries. For j > i the matrices in Qj,i have ith row zero, so by our assumption the

ith column is zero and indeed Qj,i = 0. This is a contradiction because Qj,i are

linear spans of all paths j → i and we are saying there are no non-trivial arrows,

but A is connected.

We show now the depth 3 condition being satisfied. Let nij = dim(Qi,j) then

Qi,j are closed under left and right B multiplication, indeed since B is the diagonal

matrix algebra Qi,j ∼= nij · ρikρj as B-bimodules. Thus we have the expression

A =
⊕
i≥j

Qi,j ∼=
⊕
i≥j

nij · ρikρj .

Notice that we may write Qi,j = Qi,jQj,j for all i, j, so now as B-bimodules

A⊗B A =

n⊕
i,j=1

n⊕
i≥k≥j

Qi,k ⊗B Qk,j

∼=
⊕
i≥j

mij · ρikρj ,

where mij =
∑

i≥k≥j niknkj . Note that if mij 6= 0 then niknkj 6= 0 for some k, and

this implies there will be at least one path i→ j, so that nij 6= 0 too. Comparing the

two expressions shows us that both A⊗B A and A have the same indecomposables

(which are the simple bimodules ρikρj ) and so A⊗B A ∼ A as B-bimodules.

2.3.2 Depth of the Arrow Subalgebra

Let A be the path algebra of a finite (with n vertices), acyclic, connected quiver,

we calculate its Jacobson radical. Let At be the linear span of paths in Q of length

t ∈ N. (Basic graph theory tells us that if Q is finite and acyclic then for a certain

number N the set At = 0 for t ≥ N . This is because we run out of vertices to join

with paths.)

Lemma 2.3.6 ([12], II.1.10). Let N be the maximal length of a path in Q then the

radical radA is equal to A1 ⊕A2 ⊕ . . .⊕AN .

Consider the algebra B := k1 ⊕ A1 ⊕ A2 ⊕ · · · ⊕ AN = k1 ⊕ radA, we call this

the primary arrow subalgebra. Since εi /∈ B for all i the only path of length zero

contained is 0, we conclude that radA ⊂ B is the unique maximal left, right and

22



two-sided ideal. It is easy to deduce the isomorphism B/radB = B/radA ∼= k1. We

may conclude that B has one unique simple right module by Remark 2.2.5, which

we denote by kρ. As in the discussion before Theorem 2.3.5 A has n augmentations,

allowing us to define n simple A-B-bimodules ρikρ, 1 ≤ i ≤ n. (It is also clear that

ρkρ is a simple B-bimodule.)

Lemma 2.3.7. A is an indecomposable B-bimodule.

Proof. By Lemma 2.2.4 it is enough to show that EndBAB is a local ring. Let

F ∈ EndBAB and let I = 〈ε1, . . . , εn, α1, . . . , αm〉 be an ordered basis of A such that

lengths of successive basis elements are ascending, i.e. length(αi) ≤ length(αi+1),

all 1 ≤ i ≤ m − 1. Put F into matrix form with respect to I, (Mα
β )α,β∈I so that

F (α) =
∑

β∈IM
α
β β for coefficients Mα

β ∈ k, for any α ∈ A. If α is not a basis

element sum the matrices of its basis decomposition.

Given a path α : i→ j of length r ≥ 1, note that α ∈ B and so

F (α) = αF (εj) = F (εi)α,

so we may write ∑
β∈I

Mα
β β =

∑
γ∈I

M
εj
γ αγ =

∑
δ∈I

M εi
δ δα.

Recall that Q has no non-trivial cycles, so when comparing the last equality of the

above it follows that M
εj
γ = 0 for paths γ : j → k and M εi

δ = 0 for all paths δ : `→ i.

In other words F (α) = M εi
εi α = M

εj
εj α, and this applies to basis elements α1, . . . , αm

so that the matrix of F has a constant diagonal on those elements.

Now for each εi /∈ B we analyse the action of F . Suppose that i < j, take

α : k → j to be a path for any vertex k. Notice that αF (εi) = F (αεi) = 0, so that∑
β∈IM

εi
β αβ = 0 and therefore M εi

β = 0 whenever s(β) = j. In particular, M εi
εj = 0.

It follows that the set of F ∈ EndBAB has the form of a triangular matrix algebra

with constant diagonal, like B, and is a local algebra.

Remark 2.3.8. The k-algebra of upper triangular matrices with constant diagonals

is a local algebra. An element in this algebra is invertible if and only if the diagonal

entries are non-zero. We can explicitly view the inverses in the 2× 2 matrices case:(
a b

0 a

)
,

such that a 6= 0, b is arbitrary, will have inverse
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(
a−1 −ba−2

0 a−1

)
.

In particular this means that the subset of upper triangular matrices with zero

diagonals form the unique maximal ideal, because any element not belonging to this

ideal will be invertible.

Theorem 2.3.9 ([50], Thm.5.2). The depth of the primary arrow subalgebra B in

the path algebra A defined above is d(B,A) = 4.

Proof. We first compute A ⊗B A and show d(B,A) > 3. Note that two paths of

nonzero length, α, β where s(α) = i satisfy α⊗B β = εi⊗B αβ, which is zero unless

t(α) = s(β). It follows that

A⊗B A = ⊕ni=1kεi ⊗B εi ⊕ni=2 ⊕i−1
j=1εi ⊗B εiAεj ⊕i 6=j kεi ⊗B εj .

It is obvious that the first two summations above are isomorphic as B-B-bimodules

to BAB. Note that when i 6= j, for all paths α, β,

αεi ⊗B εj = 0 = εi ⊗B εjβ

since αεi ∈ B is either zero or a path ending at i, whence αεiεj = 0. It follows that

A⊗BA ∼= A⊕n(n−1)ρkρ as B-B-bimodules; moreover, as A-B-bimodules, we note

for later reference

AA⊗B AB ∼= AAB ⊕⊕ni=1(n− 1)ρikρ (2.1)

By Lemma 2.3.7, BAB is an indecomposable, but the B-B-bimodule A⊗BA contains

another nonisomorphic indecomposable, in fact ρkρ, so that as B-bimodules, A⊗B
A 6∼ q ·A for any multiple q by Krull-Schmidt decomposition.

Now we establish that the subalgebra B ⊆ A has right depth 4 by comparing

(2.1) with the computation below:

A⊗B A⊗B A = ⊕ni=1 kεi ⊗ εi ⊗ εi ⊕ni=2⊕i−1
j=1 εi ⊗ εi ⊗ εiAεj ⊕i 6=j 6=k kεi ⊗ εj ⊗ εk

∼= A⊕ (n2 − 1) ρ1kρ ⊕ · · · ⊕ (n2 − 1) ρnkρ

as A-B-bimodules, where i 6= j 6= k symbolizes i 6= j, j 6= k or i 6= k. It is clear

that since no new bimodules appear in a decomposition of AA ⊗B A ⊗B AB as

compared with AA⊗B AB, that there is q ∈ N (in fact q = n+ 1 will do) such that

A ⊗B A ⊗B A | q · A ⊗B A as A-B-bimodules. It follows that the minimum depth
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d(B,A) = 4.

2.4 Morphisms which Preserve Depth

Let A and B be algebras, a short exact sequence of A-B-bimodules is a pair of

A-B-bimodule homomorphisms f : M ′ → M and g : M → M ′′ such that f is a

monomorphism (kerf = 0), imf = kerg and g is an epimorphism (img = M ′′). We

often put this information in a diagram:

0 //M ′
f
//M

g
//M ′′ // 0 ,

where the rule is the image of every map is equal to the kernel of the proceeding

one. Now we may define a right exact sequence to be a pair of A-B-bimodule

homomorphisms f : M ′ → M and g : M → M ′′ such that imf = kerg and g is an

epimorphism. Graphically displayed as before:

M ′
f
//M

g
//M ′′ // 0 .

Definition 2.4.1. Given algebras A,B,C,D and a functor F : AMB → CMD we

say that F is exact when it preserves exact sequences. This means that given an

exact sequence of A-B-bimodules

0 //M ′
f
//M

g
//M ′′ // 0 ,

then the below sequence of C-D-bimodules is exact

0 // FM ′
Ff
// FM

Fg
// FM ′′ // 0 .

Moreover we call F right exact when it sends every right exact sequence to a right

exact sequence.

The following lemma is well-known and has proofs in numerous textbooks, in

particular [15, Thm.3.15].

Lemma 2.4.2 (Tensor Products are Right Exact). Let M be an A-B-bimodule then

the functor − ⊗B N : AMB → AMC sending a bimodule X to M ⊗B X is right
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exact. Similarly, given a B-C-bimodule N the functor

M ⊗B − : BMC → AMC is right exact.

One consequence of the above result is that ker(id⊗ g) = id⊗ imf = id⊗kerg. For

the purposes of the main results in this section we require a better estimate of the

kernel of a tensor product of maps:

Lemma 2.4.3. Let M
γ
//M ′ be an A-B-bimodule epimorphism and let N

δ // N ′

be a B-C-bimodule epimorphism. Then γ ⊗ δ : M ⊗B N →M ′⊗B N ′ is an epimor-

phism, moreover ker(γ ⊗ δ) is generated by elements of the form x⊗ y where either

x ∈ kerγ or y ∈ kerδ.

Proof. Firstly let U be the submodule of M ⊗N generated by elements of the form

x⊗ y where x ∈ kerγ or y ∈ kerδ. When
∑
xi⊗ yi ∈ U then clearly (γ ⊗ δ)(

∑
xi⊗

yi) = 0 and therefore U ⊆ ker(γ ⊗ δ). This allows us to define a bimodule map

Φ : M ⊗B N/U →M ′ ⊗B N ′

defined by Φ(x⊗ y+U) = γ(x)⊗ δ(y). Showing that this is an isomorphism proves

the lemma. Now the fact that γ and δ are surjective allows us to write any element

in M ′×N ′ as a sum of elements of the form (γ(m), δ(n)), m ∈M,n ∈ N . We define

an bimodule map Ψ0 : M ′ × N ′ → M ⊗B N/U by Ψ0(γ(m), δ(n)) = m ⊗ n + U .

This map is well-defined: let γ(m1) = γ(m2) and δ(n1) = δ(n2) so m1 = m2 + ` and

n1 = n2 + k, for ` ∈ kerγ, k ∈ kerδ, thus

Ψ0(m1, n1) = m1 ⊗ n1 + U = (m2 + `)⊗ (n2 + k)

= m2 ⊗ n2 + `⊗ n2 +m2 ⊗ k + `⊗ k

= m2 ⊗ n2 + U.

Notice that (M ′×N ′,Ψ0) is a balanced product according to Definition 1.1.2, there-

fore there is a bimodule map Ψ : M ′ ⊗ N ′ → M ⊗ N/U given by γ(m) ⊗ δ(n) =

m⊗ n+ U . Evidently Ψ ◦ Φ = id and Φ ◦Ψ = id and we are done.

2.4.1 Kernel Condition

Let R ⊆ H be an extension of algebras and let θ : H → L be a homomorphism of

algebras. We will assume that θ is surjective, and also we shall write θ(R) as R to

cut down on notation later.
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Definition 2.4.4. We say that the homomorphism θ : H → L preserves the depth

of R ⊆ H when d(R,L) ≤ d(R,H).

Notice that we may give L an H-bimodule structure by θ pullback:

h · x · h′ = θ(h)xθ(h′).

In particular L can be an R- or R-H- or H-R-bimodule by restricting the above.

This immediately tells us that we can form tensor products L⊗RL and indeed L⊗Rn

for any n ∈ N. All such tensor products will be bimodules. Throughout the section

the following notation is used:

θ⊗n : H⊗Rn → L⊗Rn,

defined in the obvious way θ⊗n(x⊗ y ⊗ . . .⊗ z) = θ(x)⊗ θ(y)⊗ . . .⊗ θ(z). We will

write q · θn = ⊕qθn to denote the canonical morphism q ·H⊗Rn → q · L⊗Rn. All of

the maps defined above are H-bimodule morphisms.

Suppose the minimum depth is d(R,H) = 2n or 2n + 1, with the appropriate

bimodule conditions in each case. By Lemmas 1.2.3 and 1.2.8, H⊗Rn+1 ∼ H⊗Rn is

equivalent to finding two bimodule maps as in the diagram:

H⊗Rn+1
id ==

f
// q ·H⊗Rn

g
oo

. (2.2)

Notice that neither f nor g are necessarily unique. In the next result we ask that

one particular pair be found and satisfy the property:

Theorem 2.4.5. Let f, g be as in (2.2) and assume the condition

f(kerθ⊗n+1) ⊆ q · ker(θ⊗n) and kerθ⊗n+1 ⊇ g(q · ker(θ⊗n))

holds, then θ preserves depth.

Before proving the theorem let us clarify the core idea of the proof. Assume that

we are in the depth 2 or 3 case so that H ⊗R H ∼ H, then we would like to define
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homomorphisms as in the diagram:

H ⊗R H
f

//

θ⊗θ
��

q ·H

q·θ
��

g
oo

L⊗R L
f

// q · L
g

oo

,

such that g ◦f = id. This would prove that d(R,L) ≤ 2 (or ≤ 3). Define f by lifting

each element in L⊗RL by (θ⊗θ)−1 and acting on the resulting set by f , and finally

acting by q · θ. Defining g is the same but in the opposite direction. As it turns

out these maps can be well-defined, as long as the kernel condition of the theorem

is satisfied.

Proof of 2.4.5. Assume without loss of generality that d(R,H) = 2n+ 1. (The even

case is almost identical.) The core idea of the proof is to produce two R-bimodule

maps as in the diagram

L⊗Rn+1
id ==

f

// q · L⊗Rn
g
oo

.

This is in line with the remark before the proof deploying Lemmas 1.2.3 and 1.2.8.

Take y ∈ L⊗Rn+1 then y = θ⊗n+1(x), where x ∈ H⊗Rn+1. Now define f(y) =

(q · θ⊗n)f(x). Similarly if (yi) ∈ q · L⊗Rn then (yi) = (q · θ⊗n)(xi), define g(yi) =

(θ⊗n+1)g(xi). If both maps are well-defined then g ◦ f = id because

(g ◦ f)(y) = g(q · θn(f(x))) = θ⊗n+1(g ◦ f(x)) = y.

We must prove that our maps f and g are well-defined. We prove the case of f

because the idea for g is clear after that. It goes without saying that θ⊗n+1(x) =

θ⊗n+1(x′) if and only if x−x′ ∈ ker θ⊗n+1. Indeed write y = θ⊗n+1(x), y′ = θ⊗n+1(x′)

and assume that y = y′, thus

f(y)− f(y′) = f(θ⊗n+1(x))− f(θ⊗n+1(x′))

= (q · θ⊗n)f(x)− (q · θ⊗n)f(x′)

= (q · θ⊗n)(f(x)− f(x′)).
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Therefore f(y) = f(y′) if and only if

f(kerθn+1) ⊆ ker(q · θn) = q · kerθn.

Theorem 2.4.6. Given an H-ideal I ⊆ R then write π : H → H/I for the canonical

H-bimodule quotient map. Then π preserves depth i.e.

d(R/I, H/I) ≤ d(R,H).

Proof. Since I ⊆ R, take x ∈ I = kerπ so xy, yx ∈ I for any y ∈ H. Now

x ⊗ y = 1 ⊗ xy ∈ 1 ⊗ I for any y ∈ H. Similarly y ⊗ x ∈ I ⊗ 1, and indeed

I ⊗ 1 = 1 ⊗ I = (1 ⊗ 1)I. Therefore kerπ⊗Rn ⊆ kerπ(1 ⊗ . . . ⊗ 1). Now we apply

Theorem 2.4.5 where f((1 ⊗ . . . ⊗ 1)kerπ) = f(1 ⊗ . . . ⊗ 1)kerπ ⊆ q · kerπ⊗Rn+1

holds, and similarly for g, and thus π preserves depth.

Corollary 2.4.7. If I1 ⊆ I2 ⊆ . . . is a chain of H-ideals contained in R then

1 ≤ . . . ≤ d(R/I2, H/I2) ≤ d(R/I1, H/I1) ≤ d(R,H).

Proof. Use the isomorphism theorem for modules (see [2, Cor.3.7]) which tells us

that (H/Ir)/(Ir+1/Ir) is isomorphic to H/Ir+1.

2.5 Groups and Depth

Groups have quite a prominent place in depth theory. Group theory is rich in

examples which inform us about our theories, In particular, later we will talk about

Hopf algebras of finite dimension, group algebras being well-documented examples

of Hopf algebras.

Let us follow the definition of a group as in [13]. A group is a quadruple (G,

◦, e, −1) such that ◦ is an associative action, e is an identity for this action, and
−1 is an inverse for this action. Given a ring R and a group G the group ring RG

has underlying set formal pairs {rg | r ∈ R, g ∈ G} with formal addition and

multiplication defined by (rg)(r′g′) = (rr′)(gg′). When R is a k-algebra we call RG

the group algebra with respect to R and G.

Definition 2.5.1. We say that a set S is a left G-set when there is a set map
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G× S → S, with action denoted by ·, such that (gh) · s = g · (h · s) and e · s = s for

all s ∈ S. We define a right G-set in a similar way.

The main results which follow appear in the paper [4]. In their paper the authors

show that extensions of finite group rings over commutative rings have finite depth.

Throughout this section let R denote a commutative ring. The idea of the proof of

the theorem is broken down after the statement:

Theorem 2.5.2. Let H ⊆ G be an extension of finite groups then the group ring

extension RH ⊆ RG has finite depth.

Given two groups H ⊆ G one may define a (G,H)-set, which is a left G-set and

a right H-set X such that

(g · x) · h = g · (x · h).

In a very natural way, if K ⊆ H ⊆ G are finite groups and if we have a (G,H)-set

X and an (H,K)-set Y one can say that X × Y has a (G,K)-set structure. We

have a left H-action on X × Y given for (x, y) ∈ X × Y by h · (x, y) = (xh−1, hy).

Denote the H-orbit of an element (x, y) by [x, y] then we have a set X ×H Y which

is generated as a subgroup by all H-orbits {[x, y] | (x, y) ∈ X × Y }.

Lemma 2.5.3. Let K ⊆ H ⊆ G be a finite group extension with respective (G,H)-

and (H,K)-sets X,Y :

(i) There is an equivalence between the category of RG-RH-bimodules and the

categories of left R[G×H]-modules and right R[H ×G]-modules.

(ii) There is an isomorphism of RG-RK-bimodules

R[X ×H Y ] ∼= R[X]⊗RH R[Y ].

Definition 2.5.4. Combinatorial depth comes in two flavours, odd and even, very

much similar to ring depth. First of all define Θ1 := G which is a (G,G)-set (and

so a (G,H)- and (H,G)-set), and generally Θi+1 := Θi ×H G.

• For i ≥ 1 we say H ⊂ G has left combinatorial depth 2i when there is a

monomorphism of (H,G)-sets Θi+1 ↪→ m·Θi. We say it has right combinatorial

depth 2i when this is true for (G,H)-sets.

• Odd combinatorial depth 2i + 1 means the monomorphism above is between

(H,H)-sets.
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The next step towards understanding the theorem is to apply the functor R[ ] to

the sets Θi. Using Lemma 2.5.3 we see that R[Θi] ∼= R[G]⊗R[H]i as X-Y -bimodules,

where X,Y ∈ {R[G], R[H]}. So now there is a hint that ring depth might be related

to combinatorial depth when working with groups. This is true:

Lemma 2.5.5. Suppose the extension H ⊆ G has left combinatorial depth 2i then

it also has right combinatorial depth 2i. The opposite is also true. Moreover the

combinatorial depth of finite group extensions is always finite.

The lemma above implies the following, but we omit the pages of details involved in

the proofs:

Theorem 2.5.6. The ring extension RH ⊆ RG has left depth 2i if and only if it has

right depth 2i. Moreover, when finite, d(RH,RG) is bounded by the combinatorial

depth of H ⊆ G.

Corollary 2.5.7. For an extension of finite groups H ⊆ G and a ring R, the depth

d(RH,RG) is finite.

2.5.1 Invariant Subalgebras

Much of this discussion on invariant subalgebras was motivated by a question posed

in [4]. Specifically the authors ask for an estimate on the value of d(k[V ]G, k[V ]),

where k[V ] is defined below. We at least make some progress in answering this

question.

Suppose G acts faithfully on a finite dimensional vector space V . This is equiva-

lent to G being isomorphic to a subgroup of GL(V ) (the invertible matrices over the

basis of V). For our immediate purposes let k[V ] denote the polynomial algebra over

the basis of V ∗. If V has basis {e1, . . . , en} then V ∗ has basis {δ1, . . . , δn}, where

the deltas are Kronecker deltas. We may consider f ∈ k[V ] as a linear operator on

V by acting on the underlying basis. Given that V is a G-set there is a G-action for

k[V ] given by (g · f)(v) = f(g−1 · v). The G-invariants of k[V ] are defined by

k[V ]G := {p ∈ k[V ] | g · p = p, ∀g ∈ G}.

We may ask immediately what it means for k[V ]G ⊆ k[V ] to have depth 1. What

about depth 2? In general does this extension have finite depth, and will that tell

us something about the action of G on V ? The depth 1 case is a corollary of the

Shephard-Todd-Chevalley theorem, in fact it is an equivalent condition:
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Theorem 2.5.8. Let G be a subset of GL(V ), for V finite dimensional. We will say

that G is generated by pseudo-reflections when the generators of G fix a codimension

1 subspace of V. The following are equivalent.

(?) k[S]G ⊆ k[S] has depth 1.

(a) G is generated by pseudo-reflections.

(b) The algebra of invariants k[S]G is a (free) polynomial algebra.

(c) The algebra k[S] is a free module over k[S]G.

(d) The algebra k[S] is a projective module over k[S]G.

Proof. The equivalence of (a) - (d) are part of the Shephard-Todd-Chevalley result,

so we fit (?) into this framework.

(? ⇒ d). For R ⊆ H an arbitrary ring extension one of the necessary conditions

of this extension being depth 1 is that H is a projective R-module (left and right),

easily seen by H | q ·R. Now set R = k[S]G and H = k[S].

(c ⇒ ?). The first four conditions are equivalent, so (a) is equivalent to (c) and

we have that k[S] is a free k[S]G-module (and bimodule by commutativity of k[S])

so k[S] ∼= q · k[S]G which implies k[S] ∼ k[S]G in other words (?).

Subalgebra depth 1 is a fairly stringent condition and so we would like to have groups

not generated by pseudo-reflections and see which values of depth they achieve. In

particular what does depth 2 say about the action of G? Shephard and Todd,

the namesakes of the theorem, completed more work in deciding which groups are

generated by pseudo-reflections in characteristic 0, see [43]. (When reading this

paper note that in characteristic 0 pseudo-reflections are the same as reflections.)

Example 8. Any finite simple group which is not cyclic will not be generated by

pseudo-reflections. One well-known class of examples are the alternating groups An

with n ≥ 5. In general An acts on the letters {1, . . . , n} and so if V is a vector

space of dimension n we may consider k[V ]An which is determined in [44]. This

invariant subalgebra is generated by ∇, e1, . . . en where el := xl1 + . . . + xln are the

elementary symmetric functions and ∇ :=
∑

σ∈An
σ · x1x

2
2 . . . x

n−1
n−1. Can we express

k[V ]⊗k[V ]An k[V ] in simpler terms? Is depth finite?
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Chapter 3

Depth Theory for Hopf

Algebras and Smash Products

3.1 Coalgebras

Recall our definitions of an algebra from Section 2.1. We might have defined a k-

algebra as a monoidal object in the category Vectk of k-vector spaces, and this would

have been equivalent [33]. A coalgebra then is a monoidal object in the opposite

category Vectk
op, or a comonoidal object in Vectk.

Definition 3.1.1. A k-coalgebra is a triple (C,∆, ε) where C is a k-vector space

and ∆ : C → C ⊗ C and ε : C → k such that the following diagrams commute:

C
∆ //

∆
��

C ⊗ C

id⊗∆
��

C ⊗ C ∆⊗id
// C ⊗ C ⊗ C

C
∼=

%%

∼=

yy
∆
��

k ⊗ C C ⊗ C
ε⊗id
oo

id⊗ε
// C ⊗ k

We call ∆ the comultiplication map and ε the counit. We call a coalgebra C cocom-

mutative if (τ ◦∆)(c) = ∆(c) for each c ∈ C, where τ : C ⊗C → C ⊗C is the twist

map: τ(x⊗ y) = y ⊗ x.

Analogously to the algebra case we define a homomorphism of coalgebras g :

C → D to be a k-linear map which makes the square commute:
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C
g

//

∆C

��

D

∆D

��

C ⊗ C g⊗g
// D ⊗D

as well as satisfying gεC(x) = εDg(x) for all x ∈ C.

Definition 3.1.2 (Sweedler Notation). Assume that we have a coalgebra C with

comultiplication ∆ then for any x ∈ C, ∆(x) ∈ C ⊗ C and so we may write

∆(x) =
∑
(x)

x(1) ⊗ x(2).

The notation ”(x)” on the bottom of the sum serves to remind us which element

we are comultiplying; we drop this notation when the element is clearly known.

The elements x(1), x(2) ∈ C do not have a subscript telling them apart from other

terms in the sum. However these elements are symbolic and it should be implicitly

understood from this point that we do not need to see differences between terms in

the sum.

Lemma 3.1.3. Given an algebra A then A◦ := {f ∈ A∗ | f(I) = 0, I ⊆ A some ideal s.t. dim(A/I) <

∞} is a subset of A∗ and has a coalgebra structure given by ∆(f)(x, y) = xy. (The

counit is given by ε(f) = f(1).) Furthermore A∗ = A◦ when A is finite dimensional.

Proof. The complete proof can be found in [36, Chap.2].

Corollary 3.1.4. Let A be finite dimensional then A∗ = Ao and A∗ is a coalgebra.

When we have a coalgebra and an algebra C andA then the setAC := Homk(C,A)

has a natural algebra structure, called convolution, which is denoted by ∗ and defined

as below:

(f ∗ g)(c) =
∑

f(c(1))g(c(2)). (3.1)

The identity element will be ε1.

Corollary 3.1.5. For every coalgebra C the dual C∗ is an algebra.

3.2 Hopf Algebras

We define a bialgebra to be quintuple (B,µ, η,∆, ε) such that (B,µ, η) is an algebra,

(B,∆, ε) is a coalgebra and one of the following conditions hold:
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(a) µ and η are coalgebra homomorphisms.

(b) ∆ and ε are algebra homomorphisms.

Lemma 3.2.1. The two pairs of conditions above are equivalent

Remark 3.2.2. A subbialgebra D of a bialgebra B is a linear subspace which is a

subalgebra and subcoalgebra of B. Notice that the compatibility conditions directly

above are automatically implied by virtue of D ⊆ B.

Lemma 3.2.3. Given a bialgebra B with comultiplication ∆ recall the Sweedler

notation for an x ∈ B given by ∆(x) =
∑

(x) x(1) ⊗ x(2). Let y ∈ B then the

Sweedler notation of xy is given by

∆(xy) =
∑
(xy)

(xy)(1) ⊗ (xy)(2) =
∑

(x),(y)

x(1)y(1) ⊗ x(2)y(2).

Proof. Remember that ∆ is an algebra homomorphism, so ∆(xy) = ∆(x)∆(y). Put

this fact together with the knowledge of the algebra structure of B⊗B, (x⊗y)(x′⊗
y′) = xx′ ⊗ yy′, and we are done.

Definition 3.2.4. A Hopf algebra is a bialgebra H along with k-linear map S :

H → H satisfying: ∑
h(1)S(h(2)) =

∑
S(h(1))h(2) = ε(h)1

The map S above is known as the antipode. Some important properties of this map

are:

(a) S is an algebra anti-homomorphism: S(1) = 1 and S(hk) = S(k)S(h), for all

h, k ∈ H.

(b) S is a coalgebra anti-homomorphism: S(ε) = ε and

∆S(h) =
∑
S(h(2))⊗ S(h(1)).

(c) S is the convolution inverse of idH in the sense of (3.1) applied to Hom(H,H).

The properties of S above combined with convolution give us S∗id(h) =
∑
S(h(1))h(2) =

ε(h) by definition, similarly id ∗ S = ε1 and ε1 is the unit element.

Definition 3.2.5. Let K be a subbialgebra of a Hopf algebra H, then we say K is

a Hopf subalgebra when it satisfies S(K) ⊆ K.
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Given a Hopf algebra H notice in particular that H∗ has an algebra structure

using the convolution product above. Let H be finite dimensional then Corollary

3.1.5 implies a coalgebra structure on H∗, thusly H∗ is a bialgebra. Additionally

we define an antipode T : H∗ → H∗ : T (f) = f ◦ S. Thus there is a canonical

Hopf algebra structure on H∗ whenever H is finite dimensional. (In the infinite

dimensional case Ho as in Corollary 3.1.5 will be a Hopf algebra and H∗ a module

coalgebra; an object which is introduced later.) The Hopf algebra structure in the

lemma below is well known.

Lemma 3.2.6. Given a finite dimensional Hopf algebra H then H∗ will be a Hopf

algebra with the structure defined above.

Example 9. Given a group G then the group algebra is a Hopf algebra with coalge-

bra structure given by ∆(g) = g⊗g, which is then extended k-linearly. The antipode

exists and is defined by S(g) = g−1. By Corollary 2.5.7 we have already shown that

the depth of some Hopf algebra extensions is finite.

3.2.1 Integral Elements

Throughout let H denote a Hopf algebra, as above.

Definition 3.2.7. A left integral element t ∈ H satisfies ht = ε(h)t for all h ∈ H.

Similarly a right integral is s ∈ H with sh = ε(h)s.

We denote the subalgebra of left and right integrals by
∫ l
H and

∫ r
H respectively.

The following result is attributed to Larson and Sweedler, see [31].

Theorem 3.2.8. Let H be finite dimensional then:

(a) The left and right integrals are 1-dimensional i.e. dim(
∫ l
H) = dim(

∫ r
H) = 1

(b) The antipode S is a bijection with S(
∫ l
H) =

∫ r
H and vice-versa.

(c) H is a cyclic left and right H∗-module, meaning that there exists an h ∈ H
such that H = H∗ · h for some module structure.

Corollary 3.2.9. Both
∫ l
H and

∫ r
H are two-sided H-ideals.

Proof. For the left case take t ∈
∫ l
H and h, k ∈ H so that k(th) = (kt)h = ε(k)(th).

This means that
∫ l
H is stable under right multiplication, and trivially under left.

Definition 3.2.10. Taking 0 6= t ∈
∫ l
H let α : H → k be the map such that

th = α(h)t. We call α the modular function on H.
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One need not define say an α′ in the case of s ∈
∫ r
H for which hs = α′(h)s, because

α′ = α ◦ S−1. For an arbitrary h ∈ H notice the following:

S(h)s = S(h)S(t) = S(th) = α(h)S(t) = α(h)s.

Theorem 3.2.11 (Maschke’s Theorem). Let H be finite dimensional and

t ∈
∫ l
H , s ∈

∫ r
H both non-zero then H is semisimple if and only if ε(t) 6= 0 and

ε(s) 6= 0.

Corollary 3.2.12 (Maschke’s Theorem for Groups). Let G be a finite group and k

a field then kG is a semisimple if and only if char(k) - |G|

3.2.2 Normal Hopf Subalgebras

In group theory we have the concept of a normal subgroup, that is N ⊆ G with

gN = Ng for all g ∈ G. Normal subgroups K are those for which the canonical

quotient G/K is again a group. Since Hopf algebras are a generalisation of group

algebras, we would expect a generalisation of normality.

Definition 3.2.13 (Normality). Given a Hopf algebra H we define the adjoint

action in left and right types, for h, x ∈ H write

adl(h)(x) =
∑

h(1)xS(h(2)),

adr(h)(x) =
∑

S(h(1))xh(2).

We say that a sub-Hopf algebra K of H is left normal when adl(h)(K) ⊆ K and

right normal when adr(h)(K) ⊆ K for all h ∈ H. If it is left and right normal we

will call it normal.

Example 10. Let L ⊆ G be finite groups, k an arbitrary field. Then kL ⊆ kG

is an extension of finite dimensional Hopf algebras. Moreover kL is a normal Hopf

subalgebra if and only if L is a normal subgroup. We need only notice that for x ∈ L
and g ∈ G, adl(g)(x) = adr(g

−1)(x) = gxg−1, which belongs to kL if and only if L

is normal.

Lemma 3.2.14 ([47]). If K ⊆ H is an extension of Hopf algebras such that S is

bijective then K is left normal if and only if it is right normal.

Proof. (⇒). Suppose that K satisfies left normality, so for h ∈ H and x ∈ K,

adl(h)(x) ∈ K. We want to evaluate adr(h)(x) =
∑
S(h(1))xh(2) and show that it
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is an element of K. Using bijectivity choose h′ ∈ H such that S(h′) = h. Note

that S and thus S−1 is a coalgebra antihomomorphism and so we can write ∆(h′) =∑
h′(1) ⊗ h

′
(2) =

∑
S−1(h(2))⊗ S−1(h(1)). Now

adr(h
′)(k) =

∑
S(h′(1))kh

′
(2) =

∑
SS−1(h(2))kh

′
(2) =

∑
h(2)kS

−1(h(1))

This tells us that S(adr(h
′)(k)) =

∑
(h(1))S(k)S(h(2)) = adl(h)(S(k)), which since

S is bijective and K is closed under S and S−1 implies that K is right normal.

(⇐). Similarly proved.

This lemma applies in the case of finite dimensional Hopf algebras because by The-

orem 3.2.8 each one has an invertible antipode.

Suppose that K ⊆ H is left normal then HK ⊆ KH. Take k ∈ K, h ∈ H then

hk =
∑

h(1)kε(h(2)) =
∑

h(1)kS(h(2))h(3) =
∑

adl(h(1))(k)h(2),

meaning that hk ∈ KH. One may naively assume that the HK ⊆ KH condition is

equivalent to left normality, and KH ⊆ HK to right normality, but this is not true

in general. Write K+ := kerε ∩K:

Lemma 3.2.15 ([47], Thm.4.4(a)). Let H be finite dimensional, then K ⊆ H is

a left normal Hopf subalgebra if and only if HK+ ⊆ K+H. Similarly K is right

normal if and only if K+H ⊆ HK+.

Proof. (⇒) We use the argument above the lemma and restrict to K+.

(⇐) This is a trickier argument and made well in [36, Lem.3.4.2].

Corollary 3.2.16. Let H be finite dimensional, then K ⊆ H is a normal Hopf

subalgebra if and only if HK+ = K+H.

Definition 3.2.17. Given a Hopf algebra H and a vector subspace J we say that

J is a Hopf ideal when it is an ideal (respecting the algebra structure) and a coideal

(∆H(J) ⊆ H ⊗ J + J ⊗H) and furthermore S(J) ⊆ J .

Remark 3.2.18. If J ⊆ H is a Hopf ideal then H := H/J has a canonical Hopf

algebra structure.

Going back to a normal Hopf subalgebra K, we can see that HK+ = K+H is

an ideal:

H(HK+)H = (HK+)H = (K+H)H ⊆ K+H = HK+.
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Moreover by Lemma 5.5.1 proved later, HK+ is a coideal. Indeed HK+ will be a

Hopf ideal because

S(HK+) ⊆ S(K+)S(H) ⊆ K+H ⊆ HK+,

where S(kerε) ⊆ kerε and thus S(K+) ⊆ K+ are clear from the properties of S on

page 35. We have just showed that HK+ is a Hopf ideal and H/HK+ is a Hopf

algebra.

Normality has a strong relation to the depth 2 condition, and the point of dis-

cussing normality in such detail was to arrive at this result:

Theorem 3.2.19 ([5], Prop.2.8). Given a finite dimensional Hopf algebra extension

K ⊆ H then this extension satisfies the left depth 2 condition if and only if K is

right normal. The same is also true of right depth 2 and left normality.

Proof. (⇒) Assume that R ⊆ H has depth 2. Notice that H is an augmented

algebra (see page 14 for the definition) using the counit ε : H → k, so we can apply

Proposition 2.1.1. Using this result left depth 2 implies the condition K+H ⊆ HK+

and because H is finite dimensional Lemma 3.2.15 says this is equivalent to K ⊆ H
being right normal. Proving that right depth 2 implies left normality is similar.

(⇐) This more difficult direction can be found in the reference.

3.3 Smash Products

Definition 3.3.1. Given a Hopf algebra H we define an H-module algebra to be

an algebra A with an H-module structure which satisfies

(a) h · (xy) =
∑

(h(1) · x)(h(2) · y)

(b) h · 1 = ε(h)1.

In other words the algebra maps µ : A⊗A→ A and η : k → A are H-module maps.

Remark 3.3.2. In the definition above we have used a left H-module, so explicitly

we have defined a left H-module algebra. If A were a right H-module we would have

defined a right H-module algebra. By default we use the left variety.

Remark 3.3.3. We call C an H-comodule algebra when it is an algebra and H-

comodule such that the coaction ρ : C → H ⊗ C is an algebra morphism. There

is a form of Sweedler’s notation to express the coaction of ρ on x ∈ C, that is
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ρ(x) =
∑
x(0) ⊗ x(1) where x(0) ∈ H and x(1) ∈ C. Notice the order of H and C

in the coaction ρ, this implies that C is a left H-comodule, thus called a left H-

comodule algebra. The right H-comodule algebra case would be where C is a right

H-comodule. If H is finite dimensional then A is a left H-module algebra if and

only if A is a right H∗-comodule algebra: switching left and right gives an equally

true result.

The first H-module algebra we want to discuss is what we call trivial, this being

an A such that h · a = ε(h)a for all h ∈ H. Given any algebra we may give it a

trivial H-module structure, and it will automatically become an H-module algebra.

Let εk be the underlying field of H, with trivial module structure. The following

lemma is well-known.

Lemma 3.3.4. Given a trivial H-module A with finite dimension then A ∼= εk
dimA

as H-modules.

Definition 3.3.5. let C be a k-coalgebra which has an H-module structure, then

we call C an H-module coalgebra when ∆ and ε are H-module homomorphisms.

Remark 3.3.6. As with module algebras we can define left and right H-module

coalgebras, the one defined above was of the left variety.

Given a Hopf algebra H and an H-module algebra A we can form the smash

product A#H with underlying set A⊗H and with multiplication:

(a#h)(b#k) = a(h(1) · b)#h(2)k. (3.2)

This is an interesting structure already because even when A and H are commutative

the smash product may not be: (a#1)(1#h) = a#h but (1#h)(a#1) =
∑
h(1) ·

a#h(2).

Notice that we can imbed both A and H in A#H via the algebra maps a 7→ a#1

and h 7→ 1#h. We shall consider A and H as subsets of A#H directly so we can

write ah for a#h; this extends to AH = A#H.

We might have also taken a right H-module algebra B and formed the smash

product H#B. (In Chapter 5 we explicitly make use of a particular right smash

product.)

Example 11 (The Heisenberg Double). Let H be a finite dimensional Hopf algebra,

then we can describe a left H-module algebra structure on H∗ by

x ⇀ f(h) = f(hx).
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The smash product H∗#H is generally called the Heisenberg double. Indeed H∗ ⊆
H∗#H is a H-Galois extension. Galois actions are explained in Section 3.4 with the

main result there implying d(H∗, H∗#H) ≤ 2.

Now follow two technical lemmas, which we will reference in Chapter 4. Recall

the definition of the distinguished grouplike element α from Definition 3.2.10.

Lemma 3.3.7 ([36], Lem.4.4.3). Suppose A is an H-module algebra, where H is a

Hopf algebra with invertible antipode. Take t ∈
∫ l
H , then for all a ∈ A and h ∈ H:

(1) ah =
∑
h(2)(S

−1h(1) · a).

(2) hat = (h · a)t and tah = t(S−1(α ⇀ h) · a), where the action ⇀ is as in the

Heisenberg double above.

(3) (t) := AtA is an ideal in A#H.

We adapt the above result to right integrals:

Lemma 3.3.8. Take A#H as above and s ∈
∫ r
H then (s) = AsA is an A#H-ideal.

Proof. Given h ∈ H and a ∈ A

has = (h(1) · a)h(2)s = α(h(2))(h(1) · a)s ∈ AsA.

Now we use part (2) of Lemma 3.3.7 above:

sah = s(
∑

h(2)(S
−1h(1) · a)) = α(h(2))s(S

−1h(1) · a),

this element belongs to AsA as well. Thus H(As) ⊆ (s) and (sA)H ⊆ (s) and we

are done.

3.3.1 Semidirect Products

In this section we will consider semidirect products as defined in [34]. Let G be a

group and let N be a normal subgroup, and H another subgroup. We say that G is

an inner semidirect product of N with H if one of the following conditions hold:

(a) G = NH and N ∩H = {e};

(b) Every element of G can be written uniquely as nh for some n ∈ N and h ∈ H;

(c) Every element can be written as hn.
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It goes without saying that the conditions above are equivalent. When one of the

above conditions hold we will write: G = N o H. This concept generalises to the

one of outer semidirect product. This is given for two groups N and H unrelated to

those above. We say that H acts on N via automorphisms when there exists a map

φ : H → Aut(N) and thus an associated group action of H on N . We then form a

new group H oφ N with underlying set N ⊕H and multiplication

(n1h1)(n2h2) = (n1(h1 · n2))(h1h2). (3.3)

The concepts of inner and outer semidirect products are naturally equivalent. That

is to say given an inner semidirect decomposition of a group, we automatically have

a canonical outer semidirect decomposition, the opposite is also true. For this reason

we henceforth use the term semidirect product.

Astute readers may notice a similarity in the form of smash product multiplica-

tion (3.2) and with (3.3). Take k to be any field, the two results below is well-known.

Lemma 3.3.9. Let N and H be groups where H acts on N by automorphisms, then

kN is a kH-module algebra and the smash product kN#kH exists.

The action of kH on kN is canonically given by (
∑
λihi)·(

∑
µjnj) =

∑
λiµj(hi ·nj)

(λi, µj ∈ k). Write h · 1 = 1 and of course h · (nm) = (h · n)(h ·m), this gives us a

kH-module algebra.

Proposition 3.3.10. Take N and H as above then there is the following isomor-

phism of algebras

kN#kH ∼= k(N oH).

In particular the subalgebras kN and kH are preserved under this isomorphism.

Proof. Write an algebra homomorphism ψ : k(N o H) → kN#kH as follows

ψ(nh) = n#h. This is easily seen to be an algebra homomorphism

ψ((n1h1)(n2h2)) = ψ[(n1(h1 · n2))(h1h2)]

= n1(h1 · n2))#(h1h2)

= (n1#h1)(n2#h2)

= ψ(n1h1)ψ(n2h2)

The inverse to this map is clearly n#h 7→ nh.
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Recall that isomorphic ring extensions have the same depth (Lemma 1.2.6). This

allows us to write

d(kH, kN#kH) = dk(kH, k(N oH)).

Notice that k(N oH) is a group algebra, so if H,N are finite groups N oH is finite

too and Corollary 2.5.7 tells us that the value of depth above is finite.

Example 12. The symmetric group S3 is well-known to be generated by (12) and

(123). There are the two subgroups A3 = {(1), (123), (132)} and H = {(1), (12)},
where alternating subgroup A3 is normal and H ∼= S2. We can write S3 = A3 oH

because the intersection N ∩H is trivial and HA3H = A3H = S3 by normality and

A3, H containing the generators. Now it is clear S3
∼= A3 o S2, and this means by

Proposition 3.3.10 and Example 3

d(kS2, kA3#kS2) = dk(S2, A3 o S2) = dk(S2, S3) = 3.

3.4 Galois Extensions

The main point of this section is to explain what Galois actions are and their rela-

tionship to depth. A more technical, but an essentially equivalent explanation can

be found [22] where the theorem below appears. First of all let us remember the

coinvariants of a comodule algebra. So let C be a coalgebra which has a comodule

algebra A (with ρ : A → C ⊗ A) associated, then the coinvariants are defined by

AcoC := {a ∈ A |ρ(a) = a⊗ 1}. (All of these things are over the arbitrary field k.)

Definition 3.4.1. Given a Hopf algebra H and a right H-comodule algebra A with

coaction ρ and B := AcoH . Then we say that B ⊆ A is a Hopf-Galois extension

(H-Galois) if the following k-linear map is an isomorphism:

β : A⊗B A→ A⊗H

: a⊗ b 7→ (a⊗ 1)ρ(b).

Remark 3.4.2. What stops us from instead defining β′(a ⊗ b) = ρ(a)(b ⊗ 1) and

basing the definition of a Hopf-Galois extension on this? The answer is nothing,

indeed if the antipode S is bijective then β is an isomorphism ⇔ β′ is too.

Lemma 3.4.3 (Kreimer and Takuchi, [28], Thm.1.7). Let A and B be as above with

H finite dimensional then if β is surjective it is also injective.
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Lemma 3.4.4. The map β above is A-B-linear and β′ is B-A-linear.

Proof. Given a ∈ A, b ∈ B recall that B = AcoH so that ρ(b) = b ⊗ 1. Now for

x⊗ y ∈ A⊗B A

aβ(x⊗ y)b = a(x⊗ 1)ρ(y)b

= a(xy(0)b⊗ y(1))

= a(xy(0) ⊗ y(1))(b⊗ 1)

= a(xy(0) ⊗ y(1))ρ(b)

= a(x⊗ 1)ρ(y)ρ(b)

= a(x⊗ 1)ρ(yb)

= β(ax⊗ yb).

The case of β′ is very similar.

One of the main motivations for talking Galois extensions in the case of smash

products is the following lemma. This is the immediate corollary of [36, Thm 1.8.4]:

Lemma 3.4.5 ([36], Cor.8.2.5). Let B ⊆ A be an extension of right H-comodule

algebras such that B = AcoH then B ⊆ A is Galois with the normal basis property

(A ∼= A ⊗H as left A-modules and right H-modules) if and only if A ∼= B#σH as

left A-modules.

Of course the #σ notation has yet to appear. It is known as a crossed product (as

opposed to a smash product) and is defined in [36], also in the definition to come.

Suppose that A is a k-algebra, we say that H measures A when there is a map

H⊗A→ A : h⊗a→ h ·a with (i) h ·(ab) =
∑

(h(1) ·a)(h(2) ·b); and (ii) h ·1 = ε(h)1.

Lemma & Definition 3.4.6. Suppose that as above H measures A and that there

is a map σ ∈ Homk(H ⊗ H,A) which is invertible in the sense of convolution

stated in Equation 3.1. Then we define A#σH to have underlying set A⊗H with a

multiplication

(a#h)(b#k) =
∑

a(h(1) · b)σ(h(2), k(1))#h(3)k(2).

The lemma content follows: This multiplication for A#σH is associative if and only

if the following conditions hold
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(a) A is a H-module with a σ-twist that is

h · (k · a) =
∑

σ(h(1), k(1))(h(2)k)(2) · a)σ−1(h(3), k(3)),

for all h, k ∈ H and a ∈ A.

(b) σ [is normal and so] satisfies σ(1, h) = σ(h, 1) = ε(h)1, and∑
(h(1) · σ(k(1), l(1))σ(h(2), k(2)l(2)) =

∑
σ(h(1), k(1))σ(h(2)k(2), l) (3.4)

for all h, k, l ∈ H

There are a few sources of information on crossed products, in particular the paper of

[37] explains crossed products in section 4. The proof of the exercise involves showing

that 1#1 is the identity if and only if σ is normal. Associativity is equivalent to the

2-cocycle equation (3.4) above.

Note in particular that A#H is a crossed product with σ = ε⊗ ε. The following

result comes from [18, Thm 4.1], as a combination of results from [26] and [24].

Proposition 3.4.7. With AcoH = B ⊆ A an H-Galois extension and H finite

dimensional then d(B,A) ≤ 2.

Proof. Give A⊗BA the usual A-bimodule structure, for x⊗y ∈ A⊗BA and a, a′ ∈ A
write a(x⊗ y)a′ = ax⊗ ya′. Give A⊗H the A-bimodule structure which ignores H:

a(x ⊗ h)a′ = axa′ ⊗ h. It is not hard to see that A ⊗H ∼= AdimH as A-bimodules,

call this isomorphism φ.

Assume that β : A⊗BA→ A⊗H is bijective and k-linear, the same goes for β′ as

in Remark 3.4.2. Recall by Lemma 3.4.4 that β is A-B-linear and β′ is B-A-linear.

Using Lemma 3.4.3 for finite dimensional H and putting together the pieces:

A⊗B A
β
--

β′
22 A⊗H

φ
// AdimH .

Where φ ◦ β is a B-A-bimodule isomorphism and φ ◦ β′ is an A-B-bimodule isomor-

phism. Indeed this is both left and right parts of the depth 2 condition by Lemma

1.2.9.
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Note that parts (a) and (b) of the theorem below appear in [36]. Part (c) is

where the depth theory relates to the known results.

Theorem 3.4.8. Let A be an H-module algebra, then we have the smash product

A#H. Furthermore this smash product will have a comodule algebra structure given

by ρ(a#h) =
∑
a#h(1) ⊗ h(2). The following are true:

(a) (A#H)coH = A.

(b) A ⊆ A#H is H-Galois.

(c) When H is finite dimensional d(A,A#H) ≤ 2.

Proof. We check that A#H is in fact an H-comodule algebra. This is easily done,

for if a#h, d#k ∈ A#H

ρ((a#h)(d#k)) = ρ(a(h(1) · d)#h(2)k) = a(h(1) · d)#h(2)k(1) ⊗ h(3)k(2)

= (a#h(1) ⊗ h(2))(d#k(1) ⊗ k(2))

= ρ(a#h)ρ(d#k).

To prove the claim in (a) suppose that
∑

i ai#hi ∈ (A#H)coH , then

ρ(
∑

i ai#hi) = (
∑

i ai#hi)⊗ 1 which by definition of ρ is equal to∑
i ai#∆(hi) =

∑
i

∑
(hi)

ai#(hi)(1)⊗(hi)(2). Recall the counit ε ofH, now apply the

map (id⊗ε⊗id) to the previous equality, the resulting equality is
∑

i ai#1⊗ε(hi)1 =∑
i ai#1⊗hi. Applying id⊗µ to this equality tells us that

∑
i ai#hi =

∑
i ai#ε(hi)1.

Therefore (A#H)coH = A.

For the proof of (b) we provide an inverse to β, showing the bijectivity of this

map. I claim this inverse is δ : A#H⊗H → A#H⊗AA#H defined by δ(a#h⊗k) =

(a#hS(k(1)))⊗ (1#k(2)).

δ ◦ β(a#h⊗ d#k) = δ(a(h(1) · d)#h(2)k(1) ⊗ k(2))

= a(h(1) · d)#h(2)k(1)S(k(2))⊗ k(3)

= a(h(1) · d)#h(2) ⊗ ε(k(1)k(2)

= (a#h)(d#1)⊗ (1#k)

= (a#h)⊗ (d#k).
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And similarly:

β ◦ δ(a#h⊗ k) = β[(a#hS(k(1))⊗ (1#k(2))]

= (a#hS(k(1))⊗ 1)ρ(1#k(2))

= (a#hS(k(1))k(2))⊗ k(3)

= a#h⊗ k.

To show (c) we invoke Proposition 3.4.7.

3.4.1 Galois Extension from Depth Two

In their paper [26] the authors have worked with various algebraic structures arising

from the depth 2 condition (and other interesting details). One major result from

the paper, on Hopf-Galois extensions, is stated below - although we omit much of

the details of the paper. It provides a thought-provoking converse to Proposition

3.4.7.

Given a pair of k-algebras B ⊆ A, we say that this extension is Frobenius when

there is a Frobenius homomorphism E : BAB → BAB and so-called dual bases

xi, yi ∈ A (1 ≤ i ≤ n) such that for all a ∈ A

•
∑

iE(axi)yi = a;

• E(a′a) = 0 for all a′ ∈ A implies a = 0.

We call the algebra extension B ⊆ A irreducible when AB = k, where AB are the

elements a ∈ A such that ba = ab for all b ∈ B. The following result is taken from

[26, Cor.8.1.4].

Proposition 3.4.9. Let B ⊆ A be an irreducible Frobenius extension with d(B,A) ≤
2, then B ⊆ A is a Hopf-Galois extension.

The extension B ⊆ A can only be Hopf-Galois with respect to some Hopf algebra:

the set (A⊗B A)B can be shown (after a long and intricate proof) to have the Hopf

algebra structure we require.
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Chapter 4

Smash Product Depth Examples

During the last chapter we made the point that for a finite dimensional Hopf algebra

H and an H-module algebra A the depth d(A,A#H) ≤ 2 (Theorem 3.4.8). In

Example 12 it was made clear that there exists more than one finite group algebra

kG and kG-module algebra A such that

d(kG,A#kG) > 2.

In this chapter we will provide two examples of a finite dimensional Hopf algebras H

which are neither group algebras nor their duals with an H-module algebra such that

d(H,A#H) > 2. Beforehand we provide a well-known property of group algebras:

Lemma 4.0.1. Given any group algebra kG then it is cocommutative, consequently

the dual Hopf algebra (kG)∗ is commutative.

Proof. By definition the coproduct in kG is defined by ∆(x) = x⊗x which is clearly

equal to ∆op.

4.1 The Taft Algebras

Let us work with a class of well-known C-algebras known as the Taft algebras. For

background details one might read Taft’s paper, where this class of algebras were

discovered [46]. As in the paper we can replace C with any field k which has the

necessary primitive roots of unity. The case of n = 2 is called Sweedler’s algebra,

which predates Taft’s set of examples and was the first historical case of a Hopf

algebra neither commutative nor cocommutative [41],[45]. Since group algebras kG
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are cocommutative and their duals (kG)∗ are commutative the Taft algebras are

neither group algebras nor their duals.

For some n ≥ 2 let ψ ∈ C be a primitive nth root of unity, we define the nth Taft

algebra as

Hn := C〈1, g, x, xg| gn = 1, xn = 0, xg = ψgx〉.

Notice the Hopf algebra structure given by:

∆(x) = 1⊗ x+ x⊗ g, ∆(g) = g ⊗ g,

S(x) = −xg−1, S(g) = g−1 and ε(x) = 0, ε(g) = 1

Fix a particular n ≥ 2 and write H := Hn. The subalgebra C〈g〉 ⊆ H generated

by the group-like element g is isomorphic to CZn, indeed this is an isomorphism of

Hopf algebras. Write B := C〈g〉 for nicer reading. Notice that C〈x〉 ⊆ H is also a

Hopf subalgebra, and write X := C〈x〉.

Lemma 4.1.1. Taking B and X as above we may express H as a smash product:

H ∼= X#B.

Proof. One must demonstrate first that X is a B-module algebra, in other words a

CZn-module algebra. Define an action of g on x by g · x = ψ−1x, then we extend

the action so that gr · xs = ψ−rsxs. So the smash product X#B does exist and

both X ⊆ H and B ⊆ H imbed in X#B naturally via x 7→ x#1 and g 7→ 1#g.

In particular the multiplication of the smash product is (1#g)(x#1) = g · x#g =

ψ−1x#g = ψ−1(x#1)(1#g). This looks exactly like the multiplication property for

x, g in H and then H imbeds in X#B as an algebra. Since the dimensions are equal

(dimXdimB = n2) the embedding is surjective.

Given that H is a Hopf algebra X#B will have exactly the same Hopf algebraic

structure on its basis elements.

Lemma 4.1.2. The Hopf algebra extension B ⊆ X#B does not satisfy the depth 2

condition.

Proof. We show that left depth 2 is not satisfied. By Theorem 3.2.19 we need only
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show that B ⊆ H is not left normal:

(adlx)(g) =
∑

x(1)gS(x(2))

= gS(x) + xgg−1

= −gxg−1 + x

= −ψ−1xgg−1 + x

= (ψ−1 − 1)x

Notice that ψ−1 − 1 6= 0 and thus (ψ−1 − 1)x /∈ B and as such (adlH)(B) * B.

Then B is not left ad-stable i.e. it is not left normal.

So depth 2 wasn’t satisfied, B fails to have the necessary properties of such an

extension. The next case to look at is depth 3, after depth 2 there is not a strong

classification of Hopf subalgebras satisfying the condition; we need to evaluate each

example on a case-by-case basis, and learn as we go along. Demonstrating the depth

3 condition means showing that H ⊗B H ∼ q ·H as B-bimodules. Using Lemmas

1.2.3 and 1.2.8 we must now find B-bimodule maps satisfying the diagram:

H ⊗B Hid << // q ·H
oo

.

Lemma 4.1.3. Both H and H ⊗B H are free left B-modules with the following

bases:

{1, xr | 1 ≤ r < n},

{1⊗ 1, xr ⊗ 1, 1⊗ xs, xr ⊗ xs | 1 ≤ r, s < n}.

In particular note that dim(BH) = n and dim(BH ⊗BH) = n2. These sets are also

bases for the right modules HB and H ⊗B HB.

Proof. First of all we show linear independence of the 1, x, . . . , xn−1. To this end

take f0, f1, . . . , fn−1 ∈ B and suppose

f0 + f1x+ . . .+ fn−1x
n−1 = 0.

Recall that xn = 0, by definition, and multiply the equation above on the right by

xn−1, so that we have the new equation

f0x
n−1 + f1x

n + . . .+ fn−1x
2n−2 = f0x

n−1 = 0.
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We may deduce that f1 = 0, and we can repeat the process multiplying by n − 2,

n− 3 etc. Finally we deduce that f0 = f1 = . . . = fn−1 = 0 and thus 1, x, . . . , xn−1

is a linearly independent set of B-module elements. It is clear that BH is generated

by these elements, so they form a basis.

Note that Bx = xB and so the basis {1, xr | 1 ≤ r < n} of BH is also a basis

for HB. Using basic tensor product theory we see {1, xr} ⊗B {1, xs} is a basis for

H ⊗B H.

Obviously we may flip all of the prior arguments and get the same bases for HB

and H ⊗B HB.

Theorem 4.1.4. The depth d(B,H) is 3.

Proof. Let m be a natural number and denote by (m) the modulo value m(mod n).

By this convention ψm = ψ(m) for all m ∈ N because it is an nth root of unity. Define

a map F : H ⊗B H → n ·H on the basis (and extend by left and right B-action) as

follows:

xr ⊗ xs 7→ (x(r+s))r+1.

We may take r, s = 0 to ensure the whole basis is considered. F is a homomorphism

of B-bimodules, for

g(xr ⊗ xs) = ψr+s(xr ⊗ xs)g

and g(x(r+s))r+1 = ψr+s(x(r+s))r+1g. It is not hard to see that F is surjective,

because (xi)j is a basis of n ·H and if i ≥ j − 1 then F (xj−1 ⊗ xi−j+1) = (xi)j and

if i < j − 1 then F (xj−1 ⊗ xn−j+i+1) = (xi)j . We prove that F is a monomorphism

by showing that it is non-zero on the basis elements. Notice that F (xr ⊗ xs) =

(x(r+s))r+1 can not take a zero value because xm = 0 only for m ≥ n whereas

0 ≤ (r + s) < n

4.2 The Algebra C#H2

In this example we work with the coopposite of Sweedler’s algebra H2, considered

as an R-algebra, where R obviously has primitive square roots of unity. We may

consequently consider C as an Hcop
2 -module algebra, so the smash product C#Hcop

2

exists. A definition and details of this object are given in [36], [35].

The definition of Sweedler’s algebra is explicitly given by

H2 := R〈1, g, x, gx| g2 = 1, x2 = 0, gx = −xg〉.
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Now, following page 52 of the book [36] we define H := Hcop
2 , that is the coopposite

Hopf algebra. The Hopf algebra structure of the Taft algebras is given in the previous

example, so the coopposite case is with reversed comultiplication: ∆(x) = x⊗1+g⊗x
and ∆(g) = g ⊗ g, then S(g) = g and S(x) = xg, also ε(g) = 1, ε(x) = 0.

Notice that H is neither commutative nor cocommutative. Furthermore H is

not semisimple by Lemmas 2.2.9 and 2.2.10, and because x ∈rad(H).

The complex numbers C form a 2-dimensional R-algebra in the most natural

way; basis {1, i}. Furthermore H above acts on C in the following manner:

g · 1 = 1, g · i = −i

x · 1 = 0, x · i = 1

Thus C is an H-module algebra and we can form a smash product C#H. Write

B := C#H.

This is of course an 8-dimensional algebra with generators those of H plus i, and

with additional relations:

gi = −ig, xi = 1− ix.

In [36, Sec.4.4.8] Montgomery discusses some important technical details of H.

In particular she produces left and right integrals t = (1 + g)x ∈
∫ l
H and t′ =

(1 − g)x ∈
∫ r
H . Abstractly she shows that this is not a simple algebra, but more

concretely she is able to decompose the algebra into 2 ideals:

C#H = (t)⊕ (t′), (4.1)

where (t) := BtB and (t′) := Bt′B are ideals because Lemmas 3.3.8 and 3.3.7 prove

this generally. These ideals are 4-dimensional and can be written concisely as

(t) = CtC = R{t, it, ti, iti},

(t′) = Ct′C = R{t′, it′, t′i, it′i}.

In particular we know the R-bases explicitly.

Lemma 4.2.1. The H-bimodules (t) and (t′) are indecomposable, and consequently

are indecomposable B-bimodules.
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Proof. We show that E := End(H(t)H) ∼= R and thus this algebra has no non-

trivial idempotents and we apply Lemma 2.2.4. Take an arbitrary f ∈ E then we

can express f by its action on the basis of (t), which is given above. For example

suppose f(t) = αt + βit + γti + δiti, for α, β, γ, δ ∈ R. By f being a B-bimodule

homomorphism the element f(t) must satisfy tf(t) = f(t)t = 0 and thus f(t) = αt.

Now f(iti) ∈ (t) and must satisfy xf(iti)x = f(t) = αt and gf(iti) = −f(iti)g =

−f(iti), which ensure that f(iti) = α(iti). Similar processes for f(it), f(ti) show

f = α · id and since f was arbitrary we are done.

Finally, any B-bimodule M which can be written as M = M1 ⊕ M2 for B-

bimodules M1,M2, has this property as an H-bimodule because H ⊆ B.

Proposition 4.2.2. As H-bimodules (t) and (t′) are not isomorphic. In particular

Indec(HBH) = {(t), (t′)}.

Proof. We show that any B-bimodule map (t) → (t′) must be zero. Take such a

map φ then φ(t)t′ = φ(tt′) = 0 suggests that φ(t) = αt′+ βit′+ γt′i+ δit′i, however

we also have t′φ(t) = 0 and thus φ(t) = αt′. The only valid case is where α = 0, for

analyse tiφ(t).

Corollary 4.2.3. The isomorphism classes of indecomposables Indec(BBB), Indec(HBB)

and Indec(BBH), all consist of the bimodules {(t), (t′)}.

One can show that C#H is semisimple using Lemma 2.2.7 because C#H contains

no strongly nilpotent element. The only candidate would be nilpotent x but the

following theorem shows it is not strongly nilpotent.

Lemma 4.2.4. Element xi is an idempotent. In particular (xi)k 6= 0 for all k ∈ N.

Proof. (ix)(ix) = i(xix) = i(1− ix)x = ix since x2 = 0.

Given that C#H is semisimple we apply the Krull-Schmidt theorem to decomposi-

tion (4.1) and this tells us that (t) and (t′) are simple H, H-B and B-H-bimodules.

Moreover because C#H is finite dimensional semisimple the Artin-Wedderburn the-

orem gives a decomposition as R-algebras into Mi1(Di1) ⊕ . . . ,⊕Mit(Dit), where

Di1 , . . . , Dit are division rings over k.

Theorem 4.2.5. As R-algebras C#H is isomorphic to

M2(R)⊕M2(R),

where (t) ∼= (t′) ∼= M2(R) as algebras.
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Proof. First of all write e1 = it
2 and e2 = ti

2 , then (t) = Be1 ⊕ Be2. This is easily

verified by writing Be1 = R{t, it} and Be2 = R{iti, ti}. If we define e3 = it′

2 and

e4 = t′i
2 then (t′) = Be3 ⊕Be4 in a very similar way.

Now, (t) = R{t, it, iti, ti} has an algebra structure [given by multiplication of

basis elements]. In particular note the two definitive properties:

tit = (1 + g)xi(1 + g)x = (1 + g)2xix = (1 + 2g + g2)x(1− xi) = 2t (4.2)

t2 = (1 + g)x(1 + g)x = (1 + g)(1− g)x2 = 0. (4.3)

Therefore we have an identity element e1 + e2 ∈ (t), and another e3 + e4 ∈ (t′);

indeed (t′) is also an algebra.

The [first] map we need is (t)→M2(R) defined by

e1 =
it

2
7→ e11,

iti

2
7→ e12,

e2 =
ti

2
7→ e22,

t

2
7→ e21.

where {eij} is the canonical basis for the 2×2 matrices. This is seen to be an algebra

map by going through the matrix unit multiplication property eijekl = δjkeil and

noting for example

it

2

iti

2
=
ititi

4
=

2iti

4
=
iti

2
,

t

2

ti

2
=
tti

4
= 0.

This is a bijection because it is clearly injective and dimensions are equal.

We may write (t′) = R{t′, it′, t′i, it′i} and analogues (4.2) and (4.3) hold: it′i =

2t′ and t′2 = 0. Thus as algebras (t) ∼= (t′) and our second map (t′) → M2(R) is

given by e3 7→ e11, e4 7→ e22, it′i
2 7→ e21 and t′

2 7→ e12. (We write eij purely to

distinguish from eij .)

One immediately corollary of this theorem is that C#H is not a Hopf algebra. For

Hopf algebras K we have the counit map ε : K → k, this makes (H, ε) an augmented

algebra.

Corollary 4.2.6. With the given algebra structure C#H does not have any Hopf

algebra structure.

Proof. As mentioned above if C#H ∼= M2(R)⊕M2(R) had a Hopf algebra structure
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it would have a counit. We simply notice that every non-zero linear map ε : M2(R)→
R will not be multiplicative. Write {e11, e12, e21, e22} for the canonical basis, taking

eij 6∈ kerε we may write eij = eikekj and so for any 1 ≤ k ≤ 2, eik 6∈ kerε. Take

k 6= i so eikeij = 0 and ε(eikeij) = 0 whereas ε(eik)ε(eij) 6= 0.

Lemma 4.2.7. Some important multiplication properties are: tt′ = tit′ = t′it =

t′t = 0, and moreover

ti = (1 + g)− it′

it = (1− g)− t′i

t′i = (1− g)− it

it′ = (1 + g)− ti.

4.2.1 Indecomposables of B ⊗H B

Lemma 4.2.8. Given that B = Be1 + Be2 + Be3 + Be4 there are 6 generators of

the B-bimodule B ⊗H B:

{e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3, e4 ⊗ e4, e2 ⊗ e3, e4 ⊗ e1}

Proof. We know that B =
⊕4Bei =

⊕4 eiB then B ⊗H B can be written as⊕
Bei ⊗ ejB. Now there are certain obvious k, l ∈ N for which ek ⊗ el will be zero,

for we use the previous lemma to eliminate some. Notice that

iX ⊗ iY = 0 = Ui⊗ V i

if (X,Y ) ∈ {(t, t′), (t′, t)} and (U, V ) ∈ {(t, t′), (t′, t)}. Similarly iR⊗Si = 0 for all

R = t, t′ and S = t, t′.

We’ve discovered 8 elements ek⊗el who are definitely zero, that leaves 8 unchecked.

The potential non-zero ek ⊗ el are

e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3, e4 ⊗ e4,

e2 ⊗ e3, e2 ⊗ e1, e4 ⊗ e1, e4 ⊗ e3.

Now we must strike e2 ⊗ e1 and e4 ⊗ e3 from our list because of the properties in

the previous lemma: ti⊗ it = ((1 + g)− it′)⊗ it = (1 + g)⊗ it− it′ ⊗ it, expanding

the first term, (1 + g)⊗ it = 1⊗ (1 + g)it = 0. All the other elements are verifiably

non-zero and we are done.
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One final addition which can be made to the above lemma (which leads into the

following proposition) is that Be1 ⊗ e1B = Be2 ⊗ e2B and similarly for e3, e4. Now

we have 4 distinct sets closed under left and right B multiplication.

Proposition 4.2.9. As a vector space B ⊗H B is 16-dimensional and has basis

X1 ∪X2 ∪X3 ∪X4 where

X1 := {1⊗ t, 1⊗ ti, i⊗ t, i⊗ ti},

X2 := {1⊗ t′, 1⊗ t′i, i⊗ t′, i⊗ t′i},

X3 := {ti⊗ it′, iti⊗ it′, iti⊗ it′i, ti⊗ it′i},

X4 = {t′i⊗ it, it′i⊗ it, it′i⊗ iti, t′i⊗ iti}.

Proof. As stated just before the lemma we have 4 distinct sets invariant under left

and right B multiplication: they are Be1⊗e1B, Be3⊗e3B, Be2⊗e3B and Be4⊗e1B.

Let rx and lx denote right and left multiplication by x ∈ B. Rewrite e1 ⊗ e1 =

ti⊗ ti = i⊗ t and the same for e3 ⊗ e3 then the following diagrams commute:

Be1 ⊗ e1B Generators

Ri⊗ ti
lx

yy

rx

%%

R1⊗ ti

rx
%%

Ri⊗ t

lxyy

R1⊗ t

Be3 ⊗ e3B Generators

Ri⊗ t′i
lx

xx

rx

%%

R1⊗ t′i

rx
&&

Ri⊗ t′

lxyy

R1⊗ t′

Moreover these diagrams show that Be1 ⊗ e1B and Be3 ⊗ e3B are generated by 4

elements as a R-vector space. Similarly the diagrams corresponding to Be2 ⊗ e3B

and Be4 ⊗ e1B are
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Be2 ⊗ e3B Generators

Riti⊗ it′i
li

ww

ri

''

Rti⊗ it′i

ri ''

Riti⊗ it′

liww

Rti⊗ it′

Be4 ⊗ e1B Generators

Rit′i⊗ iti
li

ww

ri

''

Rt′i⊗ iti

ri ''

Rit′i⊗ it

liww

Rt′i⊗ it

Notice that we easily deduce the diagram of Be4 ⊗ e1B by swapping t and t′ in the

diagram of Be2 ⊗ e3B. So there are 4 distinct sets, one for each diagram, with the

property of being closed up to scalar multiple under left or right B-multiplication.

We’ve proved the lemma.

If we write the B-bimodule generated by Xi as Yi, then B ⊗H B =
⊕4

i=1 Yi. I state

without proof that that Yi � Yj for i 6= j. (A simple proof involves taking arbitrary

f : Yi → Yj an H-bimodule map and showing that f is not an isomorphism.)

Remark 4.2.10. Looking at the diagrams in the previous proof, we see that BXiB =

CXiC. Furthermore CX1C = Ce1 ⊗ e1C and similarly every other Xj is a cyclic

C-bimodule. However it is a fact that because C, as a division ring it always acts

faithfully, thus every cyclic module or bimodule is simple. So every Yi is a simple

B-bimodule, but what about their H-bimodule structure? H is not even semisimple,

so indecomposables won’t always be simple modules.

Proposition 4.2.11. The H-bimodules Yi are indecomposable and in particular

Indec(HB ⊗H BH) = {Y1, Y2, Y3, Y4}.

Proof. The method we would use is that of Proposition 4.2.2, showing that End(HYiH) =

Rid. The cases of Y1 and Y2 are taken care of by Proposition 4.2.2 and noting the

H-bimodule isomorphisms

(t) = R{t, it, ti, iti} ∼= R{1⊗ t, it⊗ 1, 1⊗ ti, it⊗ i} = Y1 and (t′) ∼= Y2

We handle the case of Y3 in a careful manner, and show that its endomorphism ring

is the algebra Rid. Take any f ∈ End(HY3H) then tf(ti ⊗ it′) = f(ti ⊗ it′)t = 0

implies f(ti⊗ it′) = αti⊗ it′.
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Naturally this will tell us that B ⊗H B ∼= Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 as B-H and H-B-

bimodules, thus we can ensure the extension H ⊆ B does not satisfy depth 3 as

follows:

Proposition 4.2.12. The extension H ⊆ B does not satisfy the depth 3 condition.

In other words d(H,B) > 3.

Proof. Proposition 4.2.11 above allows us to write Indec(HBH) = {(t), (t′)} but the

previous proposition proves the equality Indec(HB⊗H BH) = {Y1, Y2, Y3, Y4}. Since

the sets of isomorphism-unique indecomposables are unequal, Lemma 1.2.15 implies

d(H,B) > 3.

4.2.2 Indecomposables of B ⊗H B ⊗H B.

We start as before by decomposing B⊗H3 using our generators e1, e2, e3, e4 and iti.

What we must do is write B as three different sums: B =
⊕4

i=1Bei =
⊕4

i=1 eiB and

B = H(iti)H ⊕H(it′i)H. (Notice that H(iti)H = (t) and thus is indecomposable.)

Explicitly:

B⊗H3 = (
4⊕

i,j=1

Bei ⊗H(iti)H ⊗ ejB)⊕ (
4⊕

i,j=1

Bei ⊗H(it′i)H ⊗ ejB),

where we write ⊗ to denote ⊗H . Now because we may commute the H across the

⊗ and also because BeiH = Bei we may write B⊗H3 as:

(

4⊕
i,j=1

Bei ⊗ iti⊗ ejB)⊕ (

4⊕
i,j=1

Bei ⊗ it′i⊗ ejB).

Now the next step is to see for which 1 ≤ i, j ≤ 4 the elements ei ⊗ iti ⊗ ej and

ei ⊗ it′i ⊗ ej are zero. But recall Lemma 4.2.8 from before, which tells us exactly

how to do this. Notice that iti = 2e1i = 2ie2 and it′i = 2e3i = 2ie4.

Lemma 4.2.13. Upon elimination we are left with 8 unique non-zero elements:

e1 ⊗ iti⊗ e2, e3 ⊗ it′i⊗ e4,

e1 ⊗ iti⊗ e3, e3 ⊗ it′i⊗ e1,

e4 ⊗ iti⊗ e2, e2 ⊗ it′i⊗ e4,

e4 ⊗ iti⊗ e3, e2 ⊗ it′i⊗ e1.
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Label these elements V1, . . . , V8 (left to right, top to bottom) and write Wi := BViB

then B⊗H3 =
⊕8

i=1Wi.

We now may explicitly write down diagrams for each indecomposable bimodule;

or rather the generators thereof.

W1 Generators

Ri⊗ t⊗ i
lx

zz

rx

$$

R1⊗ t⊗ i

rx
$$

Ri⊗ t⊗ 1

lxzz

R1⊗ t⊗ 1

W2 Generators

Ri⊗ t′ ⊗ i
lx

yy

rx

%%

R1⊗ t′ ⊗ i

rx
%%

Ri⊗ t′ ⊗ 1

lxyy

R1⊗ t′ ⊗ 1

W3 Generators

Rit⊗ i⊗ it′i
lx

yy

rx

%%

Rt⊗ i⊗ t′i

rx
%%

Rit⊗ i⊗ t′

lxyy

R1⊗ ti⊗ it′

W4 Generators

Rit′ ⊗ i⊗ iti
lx

yy

rx

%%

Rt′ ⊗ i⊗ ti

rx
%%

Rit′ ⊗ i⊗ t

lxyy

R1⊗ t′i⊗ it

W5 Generators

Rit′i⊗ i⊗ ti
lx

xx

rx

&&

Rt′i⊗ i⊗ ti

rx
&&

Rit′i⊗ i⊗ t

lxxx

Rt′i⊗ i⊗ t

W6 Generators

Riti⊗ i⊗ t′i
lx

xx

rx

&&

Rti⊗ i⊗ t′i

rx
&&

Riti⊗ i⊗ t′

lxxx

Rti⊗ i⊗ t′
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W7 Generators

Rit′i⊗ iti⊗ it′i
lx

ww

rx

''

Rt′i⊗ iti⊗ it′i

rx
''

Rit′i⊗ iti⊗ it′

lxww

Rt′i⊗ iti⊗ it′

W8 Generators

Riti⊗ it′i⊗ iti
lx

ww

rx

''

Rti⊗ it′i⊗ iti

rx
''

Riti⊗ it′i⊗ it

lxww

Rti⊗ it′i⊗ it

Lemma 4.2.14. Each Wi is an indecomposable H-bimodule.

Proof. This proof relies on checking each diagram above, comparing properties of all

the generators (which are R-basis elements). In particular we notice that for each

Wi and every pair of basis elements e, e′ either Ann(He) 6= Ann(He
′) or Ann(eH) 6=

Ann(e′H). (It is enough to check for example lt(e) = 0 but lt(e
′) 6= 0.) The net

effect of this procedure is to ensure that all H-bimodule maps f : Wi → Wi belong

to Rid and we are done by Lemma 1.2.15.

Remark 4.2.15. The irreducibleH-bimodulesW1, . . . ,W8 haveB-H andH-B-bimodule

structures to consider as well, indeed they will be irreducible.

Theorem 4.2.16. B-bimodule isomorphisms: W1
∼= W8 and W2

∼= W7 and W3
∼=

W6 and W4
∼= W5.

Proof. Define maps as follows (and expand by H-multiplication):

W1 →W8 :

i⊗ t⊗ i 7→ iti⊗ it′i⊗ iti.

W3 →W6 :

it⊗ i⊗ it′i 7→ iti⊗ i⊗ t′i.

W2 →W7 :

i⊗ t′ ⊗ i 7→ it′i⊗ iti.

W4 →W5 :

it′ ⊗ i⊗ iti 7→ it′i⊗ i⊗ ti⊗ it′i.

Now it is clear that those maps are bijections, for we are mapping one R-basis element

to another - moreover all Wi are cyclic B-bimodules, and we are mapping one cyclic

generator to another, thus the maps are B-bilinear. Recall the indecomposable B-

and H-bimodules of B ⊗H B, which we called Y1, Y2, Y3, Y4.
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Theorem 4.2.17. We have B-bimodule isomorphisms: Y1
∼= W1, Y2

∼= W2, Y3
∼=

W3 and Y4
∼= W4.

Proof. The map Y1 →W1 is given by i⊗ti 7→ i⊗t⊗ i and extending H-bilinearly. It

clearly satisfies the conditions of a B-bimodule map because, on the elements given it

is linear in x, g and i. The other maps are defined identically, mapping the top-most

element in the respective diagram to the top-most in the other diagram.

Corollary 4.2.18. The unique indecomposable B-H-bimodules Indec(BB
⊗H3

H) are

the modules {W1,W2,W3,W4} = {Y1, Y2, Y3, Y4}. The same set is given for the H-

B-bimodule structure.

Theorem 4.2.19. The minimum depth d(H,B) is 4.

Proof. The indecomposables Indec(BB
⊗H2

H) and Indec(BB
⊗H3

H) are the same

modules. By Lemma 1.2.15 we have shown left depth 4. The right depth 4 condition

is similarly satisfied.
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Chapter 5

Module Depth

The idea of algebraic depth for ring extension is one which involves bimodules of

the form

H ⊗R . . .⊗R H.

Our choice of R and H change the depth value in ways we cannot completely de-

scribe. In the beginning of this chapter another type of depth will be defined, which

depends on Hopf algebras and modules rather than algebra extensions and bimod-

ules. This new type of depth is given the name module depth, and is fascinating in

its own right, but more importantly will be used later in the chapter to link two

major results.

In this chapter we only consider finite dimensional Hopf algebras unless stated

otherwise. We are very interested in gaining intuition on whether or not finite

dimensional Hopf algebra extensions have finite depth. Notice that very many of

the results in Chapter 1 apply to the module categories used below.

5.1 Definitions

Given an Hopf algebra H then the category HM of left H-modules is a finite tensor

category: which means, given two modules A,B ∈ HM, then A⊗B is a module via

h · (a⊗ b) =
∑

(h(1) · a)⊗ (h(2) · b).

This action is better know as the diagonal action. By repeated application of ⊗, in

a finite tensor category we may form the tensor product of n arbitrary modules, for

any n ∈ N.

Notice that HM is an additive monoidal category as in Section 1.2. Now we use
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the tensor product ⊗ over the field k and the diagonal action described above. This

means we have similarity between H-modules and in particular:

Definition 5.1.1. Let A ∈ HM, we say that A has depth n (for n ∈ N) when

A⊗n+1 ∼ A⊗n as H-modules.

Very importantly let us define A0 := k, so that there exists a module depth 0. Some

basic results are immediate:

Lemma 5.1.2. Let M,N be H-modules, and assume that M | N then this is equiv-

alent to there being two H-module maps f : M → N and g : N → M such that

g ◦ f = id.

Proof. We follow exactly the same logic as in Lemma 1.2.3 for ring depth.

Lemma 5.1.3. Let n,m ∈ N, if an H-module V has depth nm, then V ⊗n has depth

m.

Proof. We note first of all that if V satisfies V ⊗nm+1 ∼ V ⊗nm then it also satisfies

V ⊗nm+1 = V ⊗ V ⊗nm ∼ V ⊗ V ⊗nm+1 = V ⊗nm+2 and so on. Then V ⊗nm ∼
V ⊗nm+1 ∼ . . . ∼ V ⊗nm+(n−1) ∼ V ⊗nm+n = (V ⊗n)⊗m+1.

Lemma 5.1.4. Every H-module algebra A satisfies A | A⊗A via the map

φ :A→ A⊗A,

a 7→ a⊗ 1.

Similarly, for any H-module coalgebra C we get C | C ⊗ C as H-modules, via the

comultiplication ∆ : C → C ⊗ C.

Proof. This is a H-module mapping because if h ∈ H then h =
∑
h(1)ε(h(2)) by

basic Hopf algebra properties and moreover

φ(h · a) = (h · a)⊗ 1 = (
∑

h(1)ε(h(2)) · a)⊗ 1

=
∑

h(1) · a⊗ ε(h(2))1

=
∑

h(1) · a⊗ h(2) · 1

= h · (a⊗ 1).
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For the module coalgebra C basic coalgebra properties tell us that (1⊗εC)◦∆ =

id, where εC is the counit of C. By definition of module coalgebra ∆ is a H-

homomorphism and we are done.

Supposing A is an H-module algebra then A⊗n is also an H-module algebra, for all

n ∈ N, via the canonical multiplication. By a slight extension of the proof above one

deduces A⊗n | A⊗n+1 as H-modules. On the other hand if M is an H-module which

is not necessarily an H-module algebra M⊗n may theoretically not divide M⊗n+1.

We would then have to verify M⊗n | q ·M⊗n+1 (and of course M⊗n+1 | p ·M⊗n) for

the depth n condition.

Lemma 5.1.5. If A is an H-module algebra or coalgebra then A⊗t | A⊗t+1, for

every t ≥ 1. In particular if A | q · k for some q ∈ N, then k | dim(A) ·A.

Proof. The first part is clear. Suppose that A | q · k, by Lemma 5.1.2 there is an

injective H-module map f : A → q · k. Now because k is a trivial H-module and

f in injective we deduce that A must be a trivial module as well. In particular if

e1, . . . , en is k-basis of A then h · ei = ε(h)ei, it follows that A ∼= dim(A) · k.

Recall the Krull-Schmidt theorem for modules (Proposition 2.2.2). Consequently

we may write every finite dimensional H-module as a direct sum of unique indecom-

posable modules. For two H-modules M and N , M ∼ N if and only if Indec(M) =

Indec(N), this is a usage of Lemma 1.2.15. One can use this fact in relation to finite

representation type as follows:

Proposition 5.1.6 ([21], Prop.4.8). Suppose that H has finite representation type

then every finite dimensional module algebra A and every finite dimensional module

coalgebra C in MH has finite depth.

Proof. Given a module algebra A (with the same proof applied to C), use Lemma

5.1.4 to see that A | A ⊗ A, and by tensoring A⊗t | A⊗t+1, t ∈ N. By Lemma

1.2.15 this is equivalent to Indec(A⊗t) ⊆ Indec(A⊗t+1). At some point this inclusion

chain must stabilise because H has finite representation type, so the indecomposable

H-modules (up to isomorphism) are finitely many.

Proposition 5.1.7 ([21], Prop.3.3). Given a Hopf algebra H then there are finitely

many projective indecomposable H-modules up to isomorphism. Suppose P is a

projective H-module algebra (or coalgebra), then d(P,HM) is finite.
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Proof. Write HH =
⊕n

r=1 Ir as a sum of its indecomposables, then {I1, . . . , In}
describe all the projective indecomposables up to isomorphism. Each Ir is projective

by being a summand of the free module HH . Let P be a general projective module

then by definition there is another moduleX such that P⊕X ∼= p·HH for some p ∈ N.

Clearly then Indec(P ) ⊆ Indec(H). Now by [9, Prop 2.1] (and the original idea in

[27]) we are able to prove that P⊗t are projective modules for all t ∈ N therefore

Indec(P⊗t) ⊆ Indec(H). Since there are finitely many projective indecomposable

modules we are done.

5.2 Direct Sums in Braided Subcategories

Given modules A,B in HM, then we show below that for certain H the depth of

A,B and A⊕B are related. Notice the following result for module algebras.

Proposition 5.2.1. Let A and E be finite dimensional H-module algebras such that

A | E and E has module depth n in HM, then A has module depth less than or equal

to n.

Proof. Since A is a module algebra we have already established that A⊗t|A⊗t+1

for all t ∈ N. Notice that because A|E we also have A⊗n+t|E⊗n+t and thus

Indec(A⊗n+t) ⊆ Indec(E⊗n+t) for every t ∈ N. By basic properties dimE = dimA2

and so E has a Krull-Schmidt decomposition (Theorem 2.2.2). Given that E has

depth n specifically Lemma 1.2.15 applies which implies Indec(E⊗n) = Indec(E⊗n+t)

for any t ∈ N. Therefore the indecomposables of A⊗n+t must stabilise for some t.

Recall the binomial formula for complex numbers x, y

(x+ y)n =

n∑
r=1

(
n

r

)
xryn−r.

The reason we remember this formula is so that it becomes an analogy for modules.

First of all we limit our attention to braided subcategories:

Definition 5.2.2. Given a subcategory C of HM we say it is braided when there

exists a natural isomorphism cA,B : A⊗B → B⊗A for each pair of modules A,B in

C, writing Ξ for the associativity isomorphisms the following diagrams should also

commute:
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A⊗ (B ⊗ C)
c // (B ⊗ C)⊗A

Ξ

((

(A⊗B)⊗ C

Ξ
66

c⊗1
((

B ⊗ (C ⊗A)

(B ⊗A)⊗ C
Ξ
// B ⊗ (A⊗ C)

1⊗c

66

(A⊗B)⊗ C c // C ⊗ (A⊗B)

Ξ

((

A⊗ (B ⊗ C)

Ξ
66

1⊗c
((

(C ⊗A)⊗B

A⊗ (C ⊗B)
Ξ
// (A⊗ C)⊗B

c⊗1

66

.

Let H be a Hopf algebra with braided C as above, and A,B be modules in C then

using an induction proof as with the binomial formula (and considering cA,B : A ⊗
B → B ⊗A in place of commutative multiplication):

(A⊕B)⊗n ∼=
n⊕
r=0

(
n

r

)
·A⊗r ⊗B⊗n−r. (5.1)

Theorem 5.2.3. Let H be a Hopf algebra with a braided subcategory C ⊆ HM,

given A and B in C write E = A⊕ B. Suppose that A and B have depth n and m

respectively, then E satisfies depth 2M where M := max{n,m}.

Proof. Suppose that A has depth n and B depth m then both satisfy the depth M

condition. We may write the following expressions, based on (5.1) above:

E⊗2M ∼= (A⊕B)⊗2M ∼=
2M⊕
r=0

(
2M

r

)
·A⊗(2M−r) ⊗B⊗r,

E⊗2M+1 ∼= (A⊕B)⊗2M+1 ∼=
2M+1⊕
r=0

(
2M + 1

r

)
·A⊗(2M+1−r) ⊗B⊗r.

(5.2)

What we do now is look at the summands A⊗(2M+1−r) ⊗B⊗r of (5.2):

• When r = 0 and r = 2M + 1 respectively, by the module depths of A and B,
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A⊗2M+1 ∼ A⊗2M and B⊗2M+1 ∼ B⊗2M .

• While r < M the summands satisfy A⊗2M+1−r ⊗B⊗r ∼ A⊗2M−r ⊗B⊗r.

• When r = M the summand satisfies A⊗M+1 ⊗B⊗M ∼ A⊗M ⊗B⊗M .

• While r ≥M+1 the summands satisfy A⊗2M+1−r⊗B⊗r ∼ A⊗2M+1−r⊗B⊗r−1.

In conclusion we have shown that in each line of (5.2) every summand is similar to

a term of the other line and so E⊗2M ∼ E⊗2M+1 and we are done.

To specifically illustrate the idea of the proof let us do a small example. If we are

considering that both A and B have depth 1 then M = 2 and

(A⊕B)⊗2 ∼= A⊗2 ⊕ 2(A⊗B)⊕B⊗2.

Then as in the proof

(A⊕B)⊗3 ∼= A⊗3︸︷︷︸
∼A⊗2

⊕3(A⊗2 ⊗B︸ ︷︷ ︸
∼A⊗B

)⊕ 3(A⊗B⊗2︸ ︷︷ ︸
∼A⊗B

)⊕ B⊗3︸︷︷︸
∼B⊗2

∼ (A⊕B)⊗2.

Finding braided subcategories of HM is not too prohibitive a task. For instance if H

is cocommutative then M⊗N ∼= N⊗M as H-modules, for all modules M ,N . We can

see this from the twist map τ : M⊗N → N⊗M defined by τ(m⊗n) = n⊗m, which

is a k-linear bijection in general. When H is cocommutative we see that τ is an H-

module mapping and therefore is an isomorphism. Another class of examples which

are of interest to us are the Taft algebras Hn. In their paper [7, Corollary 3.7] the

authors have calculated all tensor products of the finite dimensional indecomposable

modules of the Taft algebras. Subsequently they have shown that M ⊗N ∼= N ⊗N
for all such modules. Althought this does not strictly prove that the subcategory of

finite dimensional modules is braided it is enough to apply (5.1) and the Theorem.

For the class of quasitriangular Hopf algebras [36, pg.180] the whole module category

HM is braided.

5.3 Functors

Given a functor F : KM→ HM between module categories, where K,H are Hopf

algebras, we say F preserves similarity if when M ∼ N in KM then F (M) ∼ F (N)

in HM. This concept may be worth exploring in generality, there are published

results about functors and algebraic depth bounds [4], [21], here we only introduce
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important examples for later use. Let R ⊆ H be the usual finite dimensional Hopf

algebra extension.

Lemma 5.3.1. Given three Hopf algebras H,K and L, and two functors F : HM→
KM and G : KM→ LM, then if F and G preserve similarity so does G ◦ F .

Example 13 (Dual). Consider the contravariant functor D : HM→MH , sending

a left H-module (M,.) to (M∗, /), where M∗ = Homk(M,k) and which has right

H-module structure defined by (f /h)(x) = f(h.f). A morphism σ : M → N under

D becomes Dσ : N∗ →M∗ in a canonical way: Dσ(h) = h ◦ σ.

Example 14. Given a morphism of algebras f : H → K we define a covariant

functor Ψf :MK →MH , sending an H-module (M,/) to (M,/f ), such that m /f

h = m / f(h). Moreover given a morphism of K-modules σ : M → N we define

Ψf (σ) = σ as k-linear maps. Now if f above is an isomorphism we may find

f−1 : K → H such that f ◦ f−1 = idK and f−1 ◦ f = idH so that Ψf ◦ Ψf−1 and

Ψf−1 ◦ Ψf are the identity functors of their respective categories. In other words

MH and MK become isomorphic as categories.

Write Ψ := ΨS : MH → MHop where S : H → Hop is the antipode. Since

canonically the categories MHop and HM are isomorphic we may consider Ψ as

taking right H-modules to left H-modules. By the properties after the definition

of S, it is an algebra algebra anti-isomorphism whenever H is finite dimensional, in

this case MH and HM are isomorphic as categories.

The following lemma is quite obvious but useful later, as is the fact that given a left

H-module (M,.) then Ψ sends this module to (M,/S) with action m/Sh = S(h).m.

Lemma 5.3.2. The contravariant functor Ψ◦D : HM→ HM preserves similarity.

Proof. By the lemma above, if D and Ψ preserve similarity then so does Ψ ◦ D.

The case of D is taken care of in Lemma 5.7.2. Suppose that M | N , so there exist

f : M → N and g : N → M which satisfy g ◦ f = id. By definition of a functor

Ψ(id) = id and Ψ(g ◦ f) = Ψ(g) ◦Ψ(f). Therefore Ψ(M) | Ψ(N).

Notice that a similar proof also works for functors F which respect direct sums of

modules: F (X ⊕Y ) ∼= F (X)⊕F (Y ). So that such functors also preserve similarity.

Let εk be the 1-dimensional left H-module defined by h · λ = ε(h)λ, the analogous

1-dimensional right module is given by kε, and similarly define εkε in the bimodule

case. Define a functor YR : HM→ HM by YR(M) = M⊗R εkε. By basic properties

of tensor products YR(M ⊕ N) ∼= YR(M) ⊕ YR(N) and the functor YR preserves

similarity.
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5.4 Endomorphism Module Algebras

The theorem in this section is original work. Start with an H-module algebra A

over a field K and let E := Endk(A) be the k-linear endomorphisms. It is common

knowledge that E has an algebra structure given by (gf)(x) = g(f(x)). What is

more interesting is the H-module structure of E where the action of h ∈ H on f ∈ E
is given by

(h · f)(x) =
∑

h(1) · f(Sh(2) · x),

for all x ∈ A. This makes E an H-module algebra, for given f, g ∈ E and h ∈ H

∑
(h(1) · g)(h(2) · f)(x) =

∑
(h(1) · g)(h(2) · f(Sh(3) · x))

=
∑

h(1) · g(Sh(2) · (h(3) · f(Sh(4) · x)))

=
∑

h(1) · g(εh(2)f(Sh(3) · x))

=
∑

h(1) · g(f(Sh(2) · x))

=
∑

(h · gf)(x).

In other words h · fg = (h(1) · f)(h(2) · g). Moreover h · id = ε(h)id.

Now we present an embedding A ↪→ E, namely the map φ : A→ E where φ(a) is

the endomorphism sending x to ax. That this is an embedding is clear, φ(a)(1) = a.

In fact φ(A) is a subalgebra of E:

φ(a)φ(b)(x) = a(bx) = (ab)x = φ(ab)(x).

Proposition 5.4.1. A | E as H-modules.

Proof. To prove this proposition we use Lemma 1.2.3. The map φ has a left inverse

(is a split monomorphism) ψ : E → A defined by ψ(f) = f(1). Clearly (ψφ)(a) =

a1 = a. All we need show is that φ and ψ are H-module maps. Take h ∈ H so

φ(h · a)(x) = (h · a)x and h · φ(a) sends x ∈ A to∑
h(1) · a(Sh(2) · x) =

∑
(h(1) · a)(h(2) · Sh(3) · x)

=
∑

(h(1) · a)(ε(h(2)) · x)

= (h · a)x.
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Checking that ψ is an H-module map is easy:

ψ(h · f) = (h · f)(1) =
∑

h(1) · f(Sh(2) · 1) =
∑

h(1) · f(ε(Sh(2))) = h · f(1).

Corollary 5.4.2. Let A, E be as above, and suppose that E has depth n then A has

finite depth and d(A,HM) ≤ n.

Proof. Directly apply Proposition 5.2.1.

We are able to construct a converse to the corollary above, but as with the last

section the correct setting is in braided subcategories. In the well known lemma

below A∗ is in fact the module (Ψ ◦D)(A) as described in Section 5.3.

Lemma 5.4.3. The H-module A⊗A∗ is isomorphic to E via the map

v(a⊗ f)(x) = af(x).

Proof. Write the k-basis of A as {a1, . . . , at}, then by basic linear algebra there is the

basis {a∗1, . . . , a∗t } of the dual A∗ satisfying a∗i (aj) = δij , the Kronecker deltas. Now v

is injective because given any basis element ai⊗a∗j ∈ A⊗A∗ we have v(ai⊗a∗j )(aj) =

aia
∗
j (aj) = ai, by linear independence of the basis of A we deduce that kerv = 0. It

follows that v is a linear isomorphism because dim(A⊗A∗) = dim(A)2 = dim(E).

All that remains is to show that v is a H-module homomorphism. Given h ∈ H
and a⊗ f ∈ A⊗A∗ we have the following:

v(h · (a⊗ f))(x) = v(h(1) · a⊗ h(2) · f)(x)

= (h(1) · a)(h(2) · f)(x)

= (h(1) · a)f(Sh(2) · x)

= (h · v(a⊗ f))(x).

This completes the proof.

Proposition 5.4.4. Suppose that A and A∗ belong to a braided subcategory of HM
then A and E have the same depth (even in the infinite case).

Proof. Suppose that A has depth n, so that A⊗n+1 ∼ A⊗n. By 5.3.2 (Ψ◦D) preserves

similarity, in other words (A∗)⊗n+1 ∼ (A∗)⊗n also. By the braided property we may

write (A⊗A∗)⊗n+1 ∼= A⊗n+1 ⊗ (A∗)⊗n+1 which is clearly similar to A⊗n ⊗ (A∗)⊗n,

which shows that E⊗n+1 ∼ E⊗n. Thus d(E,HM) ≤ n

70



Suppose that E has depth m, then by Corollary 5.4.2 we have d(A,HM) ≤ m.

Putting the two inequalities together proves the proposition.

5.5 Hopf Algebra Depth

The results in this section can be found in [21] and link very closely to our later results

on smash product depth bounds, as well as being interesting in themselves. Let

R ⊆ H be an extension of finite dimensional Hopf Algebras. Write R+ := kerε∩R,

this vector space is not generally a left or right H-ideal, but HR+ = H(kerε ∩ R)

will be a left H-ideal, clarified in Subsection 3.2.2. Our space HR+ moreover is an

H-coideal which can be verified using the lemma below:

Lemma 5.5.1. Given a homomorphism of coalgebras f : C → D the kernel of the

map kerf is a coideal, in other words ∆(kerf) ⊆ kerf ⊗ C + C ⊗ kerf .

Proof. A well-known result in vector space theory is as follows: given vector spaces

V,W and linear maps g : V → V ′ and h : W → W ′ then ker(g ⊗ h) = kerg ⊗W +

V ⊗ kerh.

Take some x ∈ kerf then by consequence of f being a coalgebra map ∆D(f(x)) =

(f ⊗ f)(∆C(x)) = 0 and so ∆C(x) ∈ ker(f ⊗ f).

Now clearly since HR+ is both a left ideal and a coideal the quotient V := H/HR+

has the structure of a left H-module coalgebra. In addition to the aforementioned

module and coalgebra structures, we can see that V is a trivial right R-module.

HR+ is a right module by virtue of R+ being an R-ideal. Moreover r − ε(r) ∈ R+

and therefore for h ∈ V , h(r − ε(r)) = 0 and so hr = hε(r). In summary, V is a left

H-module coalgebra and a trivial right R-module.

Theorem 5.5.2. With R ⊆ H an extension of Hopf algebras then H is a free left

and free right R-module.

The above theorem was originally proved by W. Nichols and M. Zoeller in [38]. A

well-known corollary of this result is the following, where the lecture series [42] gives

a good account of the details leading to the proof:

Lemma 5.5.3. If H is finite dimensional then dimV = dim(H)
dim(R) .

Proof. By the theorem above we are able to write RH = Re1⊕ . . .⊕Rep ∼=
⊕p

i=1 RR

which tells us that dim(H) = (dimR)p so that p = dimH
dimR . We show that dimV = p.
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As before every r ∈ R satisfies r = ε(r). In particular for every rx ∈ R+H write

x = x1e1 + . . . + xpep, so that rx = rx1e1 + . . . + rxpep and rxiei ∈ R+H. Now

{ei | 1 ≤ i ≤ p} is a k-basis in V , for every h ∈ H can be written as r1e1 + . . .+ rpep

thus h = ε(r1)e1+. . .+ε(rp)ep. The conclusion is that if we write λ1e1+. . .+λpep = 0

then this is true if and only if for ε(ri) = λi any choice r1e1 + . . . + rpep ∈ HR+.

Then we are done because riei = 0 for all i.

We could also have discussed V ′ := H/R+H which is a right module coalgebra.

Similar results hold for V ′ such as dimV ′ = dimH
dimR . In general we do not need to use

V ′ because there is enough information encoded in V for our important theorems.

We will call V the generalised quotient module associated to R ⊆ H.

The following result has been proved in numerous texts, for example [42], [48],

[1], although credit of the proof goes to E. Abe. The result provides us with breaking

insight, so let us be clear on the module actions, we give H⊗Rn the usual H-bimodule

structure

h(a⊗ b⊗ . . .⊗ c)k = ha⊗ b⊗ . . .⊗ ck.

Take the module V ⊗n ⊗H with a kind of left diagonal action of H:

h(x1 ⊗ . . .⊗ xn ⊗ y)k = h(1)x1 ⊗ . . .⊗ h(n)xn ⊗ yk. (5.3)

Proposition 5.5.4. H ⊗R H ∼= V ⊗H as H-bimodules.

Proof. Define the linear map

φ : H ⊗R H → V ⊗H

: x⊗ y 7→ x(1) ⊗ x(2)y.

This is well-defined, for it can be written as the composition of the following linear

maps:

H ⊗R H
∆⊗id

// (H ⊗H)⊗R H
id⊗µR// H ⊗H πV ⊗id// H ⊗H,

where µR : H ⊗R H → H is defined by x ⊗ y 7→ xy and πV : H → V is canonical.
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This is an H-bimodule map, for take h, k ∈ H

hφ(x⊗ y)k = h(x(1) ⊗ x(2)y)k

= h(1)x(1) ⊗ h(2)x(2)yk

= h(1)x(1) ⊗ h(2)x(2)yk

= φ(hx⊗ yk).

The inverse of φ is given by ψ : V ⊗H → H ⊗R H : w ⊗ z 7→ w(1) ⊗ S(w(2))z. This

is well-defined, it is enough to consider when w = w′ so that w ⊗ z = w′ ⊗ z (let z

range through the basis elements of H). In this case w′ = w + hr, for hr ∈ HR+,

and so

ψ(w′ ⊗ z) = w′(1) ⊗ S(w′(2))z

= w(1) ⊗ S(w(2))z + h(1)r(1) ⊗ S(h(2)r(2))z

= w(1) ⊗ S(w(2))z + h(1)r(1) ⊗ S(r(2))S(h(2))z

= w(1) ⊗ S(w(2))z + h(1)r(1)S(r(2))⊗ S(h(2))z

= w(1) ⊗ S(w(2))z = ψ(w ⊗ z).

We note above that
∑
r(1)S(r(2)) = ε(r) = 0. It is clear that φ ◦ ψ = id and

ψ ◦ φ = id.

Corollary 5.5.5. With the H-bimodule structures defined above, there is an iso-

morphism H⊗Rn ∼= V ⊗n−1 ⊗H, for n ≥ 1.

Proof. We show the n = 3 case for simplicity, using the proposition above to find

a chain of isomorphisms H ⊗R H ⊗R H ∼= (V ⊗ H) ⊗R H ∼= V ⊗ (H ⊗R H) ∼=
V ⊗ V ⊗H.

Take an extension of Hopf algebras R ⊆ H with depth 2n, by definition this means

we have a similarity of R-H-bimodules and H-R-bimodule: H⊗Rn+1 ∼ H⊗Rn. A

restriction of the isomorphism above gives us an equivalent condition:

V ⊗n ⊗H ∼ V ⊗n−1 ⊗H

as R-H- and H-R-bimodules, with the action as in (5.3). The same idea can be

used for a depth 2n+ 1 extension. Now below when we ascertain that d(V,HM) is
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finite we shall denote it as dV for quickness. Credit of the theorem below goes to L.

Kadison.

Theorem 5.5.6 ([21], Thm.4.1). Let R ⊆ H be a Hopf algebra extension with

algebraic quotient module V . Then d(V,RM) is finite if and only if d(R,H) is

finite.

Proof. Proved using Propositions 5.5.7 and 5.5.8 both below.

Proposition 5.5.7. Suppose that d(R,H) is finite then d(V,HM) is finite and

2dV ≤ deven(R,H).

Proof. Assume that R ⊆ H has depth 2n ≥ 2, then H⊗Rn+1 ∼ H⊗Rn as R-H-

bimodules in particular. If we expand this similarity using the corollary above we

get V ⊗n ⊗ H ∼ V ⊗n−1 ⊗ H as H-R-bimodules. Recall that YR of Section (5.3)

preserves similarity, we apply it to both sides of the above similarity:

V ⊗n ⊗H ⊗R εkε ∼ V ⊗n−1 ⊗H ⊗R εkε (5.4)

as left H-modules (ignore the trivial right module structure). Now by a well-known

lemma as demonstrated in ([21], Lem 2.1), H⊗R k ∼= V and therefore (5.4) becomes

V ⊗n+1 ∼ V ⊗n.

Proposition 5.5.8. If d(V,HM) is finite then d(R,H) ≤ 2dV + 2.

Proof. Suppose V has depth n as an H-module, then V ⊗n+1 ∼ V ⊗n as H-modules.

Tensoring the similarity by − ⊗ H with rightmost module multiplication, which

preserves similarity, this gives us V ⊗n+1 ⊗ H ∼ V ⊗n ⊗ H as H-bimodules. By

Corollary 5.5.5 the following H-bimodule condition is satisfied: H⊗Rn+2 ∼ H⊗Rn+1.

Corollary 5.5.9. Let R ⊆ H and V be as above where one or the other has finite

depth, then the following inequality holds:

2dV − 1 ≤ dodd(R,H) ≤ 2dV + 1.

With Theorem 5.5.6 we get a result about representation type, more powerful

than Proposition 2.1.4.

Corollary 5.5.10 ([21], Cor.5.8). Suppose that either R or H have finite represen-

tation type, then R ⊆ H has finite depth.
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Proof. Assume R has finite representation type then by Proposition 5.1.6 all module

coalgebras have finite depth. Now we apply the previous theorem to the module

coalgebra V .

Example 15. In the paper [32] the Taft algebras Tn are shown to be Nakayama

algebras and to have finite representation type. Therefore for any Hopf subalgebra

R ⊆ Tn and any containing Hopf algebra H ⊇ Tn the depths d(R, Tn) and d(Tn, H)

will be finite.

5.6 Depth of a Hopf Algebra in a Smash Product

Let H be a finite dimensional Hopf algebra, furthermore take A a finite dimensional

H-module algebra.

Lemma 5.6.1. As right H-modules A#H is isomorphic to A⊗H.

Proof. For a#h ∈ A#H and k ∈ H (a#h)k = (a#h)(1#k) = a#hk.

Proposition 5.6.2. A is a trivial H-module if and only if H ⊆ A#H has depth 1.

Proof. (⇐). Suppose H ⊆ A#H has depth 1, then A#H ∼ H as H-bimodules or

equivalently A#H | q ·H for some nonzero q ∈ N. Now apply the functor −⊗H kε

and the lemma above, so we have A ⊗ H ⊗H kε| q · (H ⊗H kε). After identifying

H ⊗H − with the identity functor we end up with the division A | q · kε. This

means that A⊕ A′ ∼= q · k, for some H-module A′, so that A is isomorphic to some

H-submodule of q · k and thus is trivial.

(⇒). Suppose that A is a trivial H-module, then we may immediately write

A ∼= q · k as H-modules for some nonzero q ∈ N. Notice that (q · k)⊗H ∼= q ·H as

H-bimodules with left diagonal and rightmost actions. Indeed using the prior facts

and the previous lemma it is clear that q ·H ∼= A⊗H ∼= A#H as H-bimodules.

Proposition 5.6.3. With A#H as above, there is an isomorphism of H-bimodules

(A#H)⊗Hn ∼= A⊗n ⊗H,

where A#H is an H-bimodule via left- and right-most multiplication and A⊗H with

left diagonal action and right-most H-multiplication.

75



Proof. Recall from the introduction on smash products that A#H = (A#1)(1#H).

Thus we can write (1#H)(A#H) = (A#H), and moreover

(A#H)⊗H (A#H) = (A#1)(1#H)⊗H (A#H)

= (A#1)⊗H (1#H)(A#H) (5.5)

= (A#1)⊗H (A#H).

This idea extends to n-fold tensor products. Define a map φ : (A#H)⊗Hn →
A⊗n ⊗H by

(a#1)⊗ (b#1)⊗ . . .⊗ (c#k) 7→ a⊗ b⊗ . . .⊗ c⊗ k

That this is a bijection is demonstrated in (5.5), so all that remains is to verify that it

is aH-bimodule homomorphism. Since it is clearly a rightH-module homomorphism

(with rightmostH action) we verify the leftH action: hφ(a#1⊗b#k) = h(a⊗b⊗k) =

(h(1) · a)⊗ (h(2) · b)⊗ h(3)k and this is equal to

φ(h(a#1⊗ b#k)) = φ((h(1) · a)#h(2) ⊗ b#k)

= φ((h(1) · a)#1⊗ (h(2) · b)#h(3)k)

= (h(1) · a)⊗ (h(2) · b)⊗ h(3)k.

Now comes one of the main results of the research.

Theorem 5.6.4. Let A be a left H-module as above then

dodd(H,A#H) = 2d(A,HM) + 1

Proof. (≤) For the first part we assume that A has module depth n so that A⊗n+1 ∼
A⊗n as H-modules. Now apply − ⊗ H to both sides of the equivalence and get

A⊗n+1 ⊗H ∼ A⊗n ⊗H. The isomorphism of Proposition 5.6.3 implies

(A#H)⊗Hn+1 ∼ (A#H)⊗Hn,

as H-bimodules.

(≥) Assume that dodd(H,A#H) = 2n+1 so that asH-bimodules (A#H)⊗Hn+1 ∼
(A#H)⊗Hn then apply Proposition 5.6.3 to see that A⊗n+1 ⊗H ∼ A⊗n ⊗H as H-
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bimodules. Apply −⊗H k to both sides of this equivalence to get

A⊗n+1 ⊗ k ∼ A⊗n ⊗ k.

Since − ⊗ k is isomorphic to the identity functor it follows that A⊗n+1 ∼ A⊗n as

H-modules, which is the depth n condition for A.

Corollary 5.6.5. Taking A,H as above, the following inequality holds:

2d(A,HM) ≤ deven(H,A#H) ≤ 2d(A,HM) + 2.

Proof. Recall that |dodd−deven| = 1, so we can just apply Theorem 5.6.4 above.

5.7 Hopf Algebra Depth II

The following results link the depth of a Hopf algebra extension R ⊆ H to the depth

of certain smash products.

Lemma 5.7.1 ([36]). Let C be a right H-module coalgebra, then C∗ is a left H-

module algebra. The same is true with left and right reversed.

If A is a finite dimensional right H-module algebra then A∗ is a left H-module

coalgebra. We can reverse left and right again.

Proof. We apply Lemma 3.1.5 for C∗ and Corollary 3.1.4 for A∗ then it is easy to

check that the colagebra and algebra structures are compatible with the module

structures.

Proposition 5.7.2. Suppose A is a finite dimensional H-module algebra, then the

module depths of A and A∗ are equal.

Proof. We prove this in two steps. First of all assume that M and N are two

arbitrary H-modules such that M |N as H-modules, then M∗|N∗ as H-modules.

For take maps as in the diagram:

Mid 88
f
// N

g
oo

,

77



then we have the dual of the diagram:

M∗id 88

g∗
//
N∗

f∗
oo .

Furthermore f∗ ◦ g∗ = (g ◦ f)∗ = (idM )∗ = idM∗ .

For the final step we see that M∗ ⊗M∗ ∼= (M ⊗M)∗. In ([49], Prop 4.1.6) the

map ψ : M∗⊗M∗ → (M ⊗M)∗ defined by ψ(f ⊗ g)(x⊗ y) = f(x)g(y) is proven to

be a k-linear isomorphism. We will see that it is a H-homomorphism as well:

ψ(f ⊗ g · h)(x⊗ y) = ψ(f · h(1) ⊗ g · h(2))(x⊗ y)

= (f · h(1))(x)(g · h(2))(y)

= f(h(1) · x)g(h(2) · y) = (ψ(f ⊗ g) · h)(x⊗ y)

It is a general fact that if a module homomorphism θ has an inverse as a set map,

then θ−1 is a module homomorphism too. This proves the proposition.

This result implies that if A is a left H-module then d(A,HM) = d(A∗,MH).

Theorem 5.7.3 (Hopf Algebra and Smash Product Depth). Let R ⊆ H be finite

dimensional Hopf algebras, if any of the depth values below are finite (or infinite)

then all of them are, and the inequalities hold:

2d(V,HM)− 1 ≤ dodd(R,H) ≤ dodd(H,H#V ∗),

where V = H/HR+ is the generalised quotient module.

Proof. Write d := d(V ∗,MH) for brevity. Recall from Proposition 5.7.2 that d =

d(V,HM). Now by Theorem 5.6.4 and Corollary 5.5.9 respectively

dodd(H,H#V ∗) = 2d+ 1, (5.6)

dodd(R,H) ≤ 2d+ 1. (5.7)

Morover Corollary 5.5.9 completes the inequalities.
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